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Executive Summary 

The quality of a system’s architecture is critical to that system’s success. This is especially 
true for software-intensive systems, which often have very complex system and software ar-
chitectures. Thus, a system’s ultimate success depends on how well its architecture helps it to 
meet its architecturally significant requirements. The quality of the overall system architec-
ture also depends on the quality of the architectures of the system’s subsystems, the quality of 
the architectures of their subsystems, and so on. Unless the architectures of these subsystems 
and sub-subsystems adequately help them meet the derived architecturally significant re-
quirements that are allocated to them, it is unlikely that the overall quality of the system ar-
chitecture will be adequate. Without this proper foundation, it becomes very difficult and ex-
pensive to achieve sufficient system quality during design, implementation, and testing. 

Unlike modern software that is often organized along object lines, systems typically continue 
to be decomposed functionally into subsystems. System architectures therefore tend to be 
driven by cohesive groupings of functional requirements (i.e., feature sets). But frequently, 
the system’s architecture should be driven as much or more by its quality requirements as by 
its functional requirements. In other words, it is important for the system architecture to help 
ensure that the system achieves sufficient levels of important quality factors, such as afforda-
bility, availability, capacity, correctness, efficiency, interoperability, modifiability, perform-
ance, portability, producibility, reliability, reusability, robustness, safety, scalability, security, 
sustainability, testability, and usability. These quality factors often become the basis of the 
most important types of architecturally significant requirements: the quality requirements. 
Unfortunately because quality requirements are often poorly specified and legitimate stake-
holder needs may not be specified at all, there is a significant risk that a system’s architecture 
will fail to adequately support its true quality requirements. 

It is very important to ensure that a system’s quality requirements be properly derived and 
allocated to its subsystems and their subsystems. It is also important to assess the quality of 
the architectures of the system and its subsystems to ensure that these architectures will suffi-
ciently enable subsystems to meet the derived quality requirements that are allocated to them. 

This handbook documents the QUASAR (QUality Assessment of System ARchitectures) 
system architecture quality assessment method, which is a practical method for assessing the 
quality of system architectures in terms of the degree to which the architectures of their sub-
systems and their sub-subsystems help ensure that they meet the derived quality requirements 
allocated to them. This handbook documents the QUASAR method in terms of the 

1. challenges the method was developed to meet 
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2. objectives of the method as well as its philosophy and assumptions 

3. concept of quality cases on which the method has been based 

4. method’s major phases and component tasks 

5. makeup and responsibilities of the teams that collaborate to perform these tasks 

6. resulting work products that the teams produce when performing these tasks 

7. lessons learned when performing earlier versions of the QUASAR method while assess-
ing the quality of the architecture of a software-intensive system of systems 

8. appendices defining terms, providing reusable checklists, and giving examples of quality 
cases 
 

QUASAR is based on the premise that the system architects are responsible for 

• knowing and understanding the relevant derived and allocated goals and requirements 
that their architectures must help their subsystems fulfill 

• creating an appropriate architecture that supports the meeting of these requirements 

• properly documenting this architecture so that their architectural decisions and associ-
ated rationales can be readily found 

• knowing whether their architectures sufficiently support the requirements that have been 
allocated to them 

• therefore, being able to make a strong case that their architectures have sufficient quality 

Based on a generalization of the idea of a safety case, which is widely used in the safety 
community, QUASAR is a structured way for the architecture team to convince the assess-
ment team that the architecture has adequate quality and for the assessment team to determine 
the veracity of the architecture team’s claims. For each important quality factor or quality 
subfactor, the architecture team makes an associated quality case that their architecture meets 
associated derived and allocated requirements. Thus, the architects could present an extensi-
bility case, interoperability case, performance case, reliability case, and safety case during an 
assessment. Each such quality case consists of the following information: 

• claims that the architecture adequately helps the system achieve its associated quality 
goals and meet its quality requirements 

• clear and compelling arguments (in terms of cohesive sets of architectural decisions and 
their associated rationales) that justify belief in these claims  

• sufficient evidence (e.g., official project architecture diagrams, models, and documents 
as well as any witnessed demonstrations) to support the architects’ arguments 

After discussing the tasks and steps of the method, the teams that perform these tasks, and the 
work products that they produce, this handbook includes a list of lessons learned during ac-
tual usage on a very large, complex program. The handbook concludes with appendices con-
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taining definitions of quality factors and their subfactors, reusable checklists, and simplified 
and sanitized examples of claims, arguments, and evidence that architects might provide dur-
ing assessments. 
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Abstract 

This handbook documents the QUASAR (QUality Assessment of System ARchitectures) 
method for assessing the quality of the architecture of a software-intensive system. It begins 
by discussing the challenges that are faced when assessing a system’s architecture and out-
lines the development history of the method. The next section of the handbook documents the 
concept of quality cases and the claims, arguments, and evidence that compose them. This is 
followed by a description of the teams that collaborate to perform QUASAR tasks. Next, in-
dividual tasks and associated steps performed as part of the QUASAR method are docu-
mented. Next, the work products produced by these teams when performing these tasks are 
described. Finally, lessons learned during the development and use of the method when as-
sessing the quality of major subsystems during the development of a very large, software-
intensive system of systems are presented. Also provided are appendices that define common 
quality factors and subfactors, offer reusable checklists, and give examples of quality cases. 
The example quality cases illustrate valid quality goals and requirements that compose 
claims, example architecture decisions and associated rationales that compose arguments, and 
the types of evidence that architects might provide.
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1 Introduction 

This section of the handbook documents the goals of the QUASAR system architecture qual-
ity assessment method and the challenges that have led to its creation. It also provides a brief 
history of the development and verification of the assessment method. 

1.1 Intended Audiences 
This handbook is intended for anyone who may mandate or take part in a system architecture 
quality assessment. This includes, but is not limited to, people who fill one or more of the 
following roles: 

• System Acquisition (Customer) Personnel 
− Customer 

Someone who may contractually mandate the performance of such assessments  

• Assessment Team Member 
− Assessor 

Someone who is responsible for technically assessing the quality of the system archi-
tecture against its quality requirements in terms of the architectural information pro-
vided by the architects 

• Subject Matter Expert 

Someone who acts as an expert during system architecture quality assessments 

• System Development Personnel 
− Manager 

Someone who mandates that development staff perform the assessments, either inter-
nally within the development organization or externally in cooperation with members 
of the acquisition organization 

− Requirements Engineer 
Someone who is a member of the requirements team and who develops and presents 
architecturally significant goals and requirements during the subsystem requirements 
review part of the assessment 

− Architect 
Someone who is a member of the architecture team, who develops the system and 
subsystem architectures, and who develops and presents the quality cases to the as-
sessment team 
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− Trainer 
Someone who provides training in how to perform system architecture quality as-
sessments 

1.2 Goals of this Handbook 
This handbook has two primary goals. 

1. Enable method use. 

This handbook is intended to enable readers to understand and use the QUASAR 
method. It clearly documents all of the major components of QUASAR method includ-
ing its phases and their component tasks, the steps making up these tasks, the participat-
ing teams and roles people play as members of these teams, and the work products they 
produce. This handbook captures the best practices in system architecture assessment in 
a single, convenient source of ready information that will help practitioners prepare for 
and perform assessments. 

Note that this is a handbook. As such, this document addresses each individual task and 
work product in some detail so that the reader need only read sections of the handbook 
that are relevant to the work at hand, rather than read the entire document. One unfortu-
nate side effect is that individual subsection completeness results in some redundancy 
between highly related subsections, which may prove annoying to anyone attempting to 
read the handbook from cover to cover. Readers falling into the latter category can feel 
free to skim over any duplicate subsections without fear of missing critical information. 

2. Provide justification for use. 

Because performing effective system architecture quality assessments requires a signifi-
cant expenditure of resources in terms of effort expended by some of a project’s most 
critical staff, the handbook also provides sufficient business and technical reasons to jus-
tify the method’s introduction and use. 

1.2.1 Properly Document QUASAR 
The primary purpose of this handbook is to properly document the QUASAR method in suf-
ficient detail so that it can be introduced and used on system development programs.  

This handbook begins by discussing the challenges that are faced when assessing the quality 
of a system’s architecture in terms of the architecture’s support for achieving its allocated 
architecturally significant requirements. This handbook also outlines the development and 
verification history of the QUASAR method. Section 2 gives an overview of the QUASAR 
method including its objectives, philosophy, and the assumptions on which it is built. Section 
3 introduces the reader to the concept of quality cases. Section 4 of the handbook documents 
the individual tasks and associated steps that are performed as a part of the QUASAR 
method. Section 5 documents the three teams that collaborate to perform the QUASAR tasks. 
Section 6 describes of the work products that are produced by teams when performing the 
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assessment tasks. Section 7 lists the lessons that have been learned during the development 
and use of the method when assessing the quality of the architectures of major subsystems 
during the development of a very large system of systems. Finally, the appendices define 
commonly used quality factors and subfactors, provide reusable checklists, and most impor-
tantly, provide the reader with examples of the kinds of information typically composing the 
quality cases that architects develop and provide to the assessors. 

1.2.2 Justify Use of the QUASAR Method 
On many systems development programs, the system architects tend to be considered some 
of the most important members of the technical development staff. Not only is the architec-
ture critical to the success of the system, the lead architect often ends up being the technical 
leader on small and medium-sized programs who assumes all of the other technical and 
managerial responsibilities that the position brings. Similarly, other lower level architects 
tend to be the leaders of their subsystem integrated project teams (IPTs). Given that most sys-
tem development programs tend to have a shorter schedule than optimal, the system archi-
tects tend to be extremely busy developing the system architectures, communicating these 
architectures with stakeholders, and ensuring the integrity of the architectures as they are 
flowed down into the lower level architectures, designs, and implementations. This is why it 
is important to understand and remember that architecture assessment brings significant value 
and return on investment to the program by significantly lowering program risks to system 
quality, development cost, and schedule due to inadequate system architectures.  If the system 
architects are properly performing their jobs, then they will have properly documented their 
architectures as they go.  At any point in time, a system architecture quality assessment 
should be able to be held with only minimal additional preparation time required of the archi-
tects.    

Another goal of this handbook is to clearly show why you should perform an appropriate 
number of system architecture quality assessments when developing any software-intensive 
system. We are therefore obliged to provide adequate business and technical reasons to justify 
its use. Section 2.1 of this handbook begins with a list of QUASAR’s objectives that you can 
use to justify expending the cost and valuable resources that using the method entails. 

1.3 Challenges 
The following are important challenges driving the development of the QUASAR method: 

• No system architecture quality assessment methods exist. 

Although well-known software architecture assessment methods exist [Clements 02], no 
well-known, industry-standard method for evaluating system architectures against their 
architecturally significant requirements exists. 

• Assessments are not mandated and are considered “scope creep.” 
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Unfortunately, acquisition organizations typically do not require system architecture 
quality assessments in the acquisition contract. Unless the contract clearly specifies the 
performance of system architecture quality assessments, the development organization 
can legitimately complain that such assessments are out of the scope of the contract and 
would therefore require unfunded effort and schedule slippage. The acquisition organi-
zation is then faced with either renegotiating the contract with non-trivial cost and 
schedule increases or using their limited bag of carrots (e.g., award fees) and sticks (e.g., 
not approving architecture documents) as a means to force the development organization 
to participate in a series of system architecture quality assessments. If the contract is not 
renegotiated, there will be extreme pressure to limit the scope of the assessments, poten-
tially to the point where major parts of the system architecture are either not assessed or 
inadequately assessed. 

• Architecturally significant requirements are poorly specified. 

Many projects do not produce sufficient, well-specified architecturally significant re-
quirements to drive the development of the system architecture and therefore, criteria 
against which to assess it. This is especially true of quality requirements (e.g., interop-
erability, modifiability, performance, portability, safety, security, usability). Without un-
ambiguously measurable quality requirements, it is difficult to determine if the architec-
ture is of sufficient quality.1

Unless the contract clearly specifies the customer’s architecturally significant require-
ments, it is highly unlikely that adequate architecturally significant subsystem require-
ments will be derived, allocated to individual subsystems, and properly specified. With-
out properly specified architecturally significant requirements, it is highly unlikely that 
the architect will have adequately guessed their existence and incorporated them into the 
architecture. The architect can then legitimately argue that being forced to support an 
unmandated, unscheduled, and unfunded system architecture quality assessment against 
unspecified requirements is a clear example of inappropriate scope creep. The result can 
be a very unproductive ring of finger pointing. 

• System architectures are inadequately documented. 

System architects do not typically document their architectures to the degree needed to 
perform a proper quality assessment. Specifically, the architectural decisions supporting 
the fulfillment of architecturally significant requirements are often not well documented, 
their rationales are often missing, and traceability of these decisions back to their quality 
requirements is often missing (especially when these requirements themselves are poorly 
specified). Also, engineering tradeoff decisions to ensure sufficient support for conflict-

                                                 
1 Note that the QUASAR method does not include guidance for the actual engineering of quality 

goals and requirements. Nevertheless, because of this challenge, QUASAR does include a phase, 
one of the primary objectives of which is to ensure that such goals and requirements have been 
properly derived and allocated to the subsystems. 
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ing quality factors (e.g., interoperability and performance vs. security) are rarely ade-
quately documented. 

• Architects are inadequately prepared for assessments. 

Because system architecture quality assessments are often not mandated in the acquisi-
tion (development) contract, architects rarely allocate adequate resources (e.g., budget 
and schedule) for preparing for and participating in the assessments. Because their archi-
tectures are often poorly documented with regard to how their architectures support the 
meeting of their allocated quality requirements, architects typically need to produce the 
documentation in order to pass the assessments.  

• Architecture size and complexity can be overwhelming. 

Modern software-intensive systems often consist of a very large hierarchy of large and 
complex subsystems, sub-subsystems, and so on. These subsystems may well collabo-
rate in highly sophisticated manners to implement thousands of functional, data, inter-
face and quality requirements. This level of size and complexity can easily overwhelm 
the human capacity of individual architects or even teams of architects to comprehend. 
Because architectural defects (e.g., mistakes, inconsistencies, and incompleteness) are 
inevitable, projects need an adequate number of architectural assessments to identify 
these defects and minimize their associated risks. 

• Incremental, parallel assessments are necessary. 

The large size of many modern systems makes it impossible to assess their architectures 
all at once. When using modern iterative, incremental, parallel, and time-boxed devel-
opment cycles, the system architecture also tends to be developed incrementally as its 
subsystems are identified and architected. This leads to the existence of multiple subsys-
tem architecture teams working in parallel. Thus, an architecture quality assessment 
method usually needs to be able to incrementally assess the system’s architecture as it is 
developed, subsystem by subsystem. Given the large number of subsystem assessments 
that need to occur, it may well be that multiple simultaneous subsystem assessments 
must occur in parallel. 

However, the assessment method also needs to be able to be scaled down for assessing 
smaller systems where only a single system assessment occurs. 

• Results summarization is necessary. 

Because the system architecture quality assessment may involve the assessment of the 
architectures of many subsystems at multiple tiers within the aggregation hierarchy of 
the overall architecture, the architecture assessment method needs to be able to summa-
rize the results of the individual subsystem architecture assessments into an overall as-
sessment of the entire system architecture. 

• Assessments must balance architect workload with effectiveness. 

System architects and assessors are extremely busy. Thus, the architecture assessment 
method should result in an appropriate balance between minimizing their workload and 
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maximizing assessment effectiveness in terms of identifying architecture defects and 
risks in order to improve the quality of the resulting architecture. 

• An experienced assessment team is needed. 

System architectures are often very complex and highly technical, requiring experience 
and training in application domains (e.g., avionics and sensors) and specialty engineer-
ing (e.g., reliability, safety, and security) in order to adequately understand and assess 
their technical ramifications to the architecture. 

• The assessment method must be repeatable. 

The system architecture assessment method typically needs to be repeated to assess the 
architectures of many different individual subsystems (or parts of subsystems) as well as 
the architecture of the same subsystems as they are iteratively and incrementally devel-
oped over time. 

• There is a lack of acquisition guidance regarding contract language. 

There is currently a lack of guidance for the acquisition manager regarding appropriate 
content to put into the request for proposal (RFP) or contract mandating the assessment 
of system architectures against their required quality characteristics. 

1.4 History of Development and Use 
The QUASAR method was originated during the assessment of the architectures of the major 
subsystems of the U.S. Department of Defense (DoD) F-35 Joint Strike Fighter (JSF) aircraft 
system of systems.2 Earlier versions of this method were used during a series of assessments 
of the architectures of both embedded aircraft systems (e.g., mission systems and vehicle sys-
tems) as well as ground-based systems (e.g., information systems and training systems). As a 
result of each individual assessment, substantial lessons were learned and incorporated into 
the method.  

The QUASAR method has also been significantly based on the experience of the handbook’s 
authors as architects and architecture assessors. It is also important to note that the specific 
challenges listed that justify the performance of QUASAR assessments as well as the exam-
ple quality cases in the appendix of this handbook are very general, highly sanitized, and not 
related to any specific system development program.  

 

                                                 
2 Because the SEI became involved after contract award, the SEI was neither able to ensure that 

system architecture quality assessments were written into the contract, nor ensure a proper early 
emphasis on the engineering of the quality requirements on which the QUASAR method is based. 
Instead, the use of system architecture quality assessments to address system compliance with a 
small number of contractual architecture requirements is largely due to the farsightedness of 
members of the acquisition staff responsible for system architecture. 
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2 QUASAR Overview 

When following the QUASAR method, one or more assessment teams assess the quality of a 
system’s architecture by means of quality cases, which are developed and presented to the 
assessment teams by the system and subsystem architecture teams. The architecture teams 
use these quality cases to make the case that their architectures sufficiently support the sys-
tem’s ability to meet its associated quality requirements. Thus, QUASAR enables the archi-
tecture teams to convince the assessment teams that their architectures provide sufficient 
support for necessary system quality factors.3

Note that QUASAR is not a means for assessing the architects’ plans and procedures for de-
veloping their system architecture. Although this information tends to naturally become clear 
during QUASAR assessments, the QUASAR method neither assesses the quality or appro-
priateness of the system architecture process, nor does it assess whether the architecture 
teams are following their architecture methods. In other words, QUASAR assesses neither 
process goodness nor method compliance. Instead, QUASAR assesses the actual quality of 
the system architecture at one or more specific points in time.4

2.1 Objectives of System Architecture Quality  
Assessments 

Understanding the many objectives for performing system architecture assessments in gen-
eral and QUASAR assessments in particular, provides a strong business and technical case 
for investing the significant resources required to perform them. Because different system 
stakeholders can use architecture quality assessments to achieve different objectives, the 
reader is invited to select the specific, appropriate objectives from the following list when 
arguing for the incorporation of system architecture quality assessments into a project. 

                                                 
3 Quality factors (sometimes called quality attributes and quality characteristics) include afforda-

bility, availability, capacity, configurability, correctness, efficiency, extensibility, interoperability, 
maintainability, modifiability, portability, producibility, reliability, reusability, robustness, safety, 
scalability, security, stability, sustainability, testability, and usability. 

4 The system architecture decomposes the system into its subsystems, their sub-subsystems, and so 
on. The system architecture is therefore assessed in terms of the architectures of its subsystems; 
the individual subsystem-specific assessments will naturally occur on different dates. 
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The QUASAR method is used to assess the quality of the architecture of systems and their 
subsystems in order to 

1. Determine system architecture quality. 

The architecture of a system significantly constrains the downstream system design and 
implementation as well as the performance of the system integration, testing, and pro-
duction activities. Because the levels of a system’s quality factors are largely enabled (or 
made difficult to achieve) by the system’s architecture, the quality of a system’s archi-
tecture greatly influences the quality of the resulting system. Thus, the primary objective 
of QUASAR assessments is to determine the quality of the system’s architecture in 
terms of the degree to which the architecture enables the system to meet its associated 
quality goals and requirements. 

2. Determine contract compliance. 

Large systems are often developed by means of contracts between an acquisition (cus-
tomer) organization and the development organization (also called a supplier or vendor). 
If the customer mandates appropriate contractually binding, quality-relevant require-
ments5 as part of the acquisition contract, then to minimize project risk and exercise ac-
quisition oversight due diligence, the acquisition organization may also mandate a series 
of system architecture quality assessments to verify that the development organization’s 
complies with these contractual requirements. On such programs, a major objective of 
QUASAR assessments is to determine compliance of the system architecture with these 
architecturally significant, contractual requirements. 

3. Ensure specification of architecturally significant requirements. 

The architecturally significant requirements are often very poorly engineered and this is 
especially true of the quality requirements. Many are never specified at all, or else they 
are incorrectly specified as ambiguous, infeasible, and unverifiable goals such as “the 
system shall be reliable” or “the system shall be safe.” Although there are many reasons 
why this occurs in practice,6 the result is the same. The architects have to guess at the 
required qualities of the architecture without knowing how good is good enough or how 
best to perform engineering tradeoffs between conflicting qualities such as security ver-
sus maintainability and testability. It is often not until relatively late in the program, for 

                                                 
5 The primary type of quality-relevant requirements is quality requirements that specify a minimum 

acceptable level of some quality factor or quality subfactor. The three other types of quality-
relevant requirements are (1) quality-significant requirements (e.g., functional requirements that 
have quality ramifications), (2) quality subsystem requirements (i.e., requirements for a quality 
subsystem such as a safety subsystem), and (3) quality constraints (e.g., architecture constraints 
that mandate a specific quality architectural mechanism, design constraints that mandate a quality 
design decision, or implementation constraints that mandate a quality implementation decision 
such as the use of a safe subset of a programming language) [Firesmith 03]. 

6 The most notable of these is the myth that quality requirements cannot be unambiguously speci-
fied, which itself is due largely to a lack of training in how to properly specify such requirements. 
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example, during system testing, that addressing this problem becomes unavoidable. 
Thus, a major objective of QUASAR assessments is to ensure that the architecture can 
be successfully assessed. In order to assess the architecture against its support for the ar-
chitecturally significant quality requirements, these requirements must exist, they must 
have the proper characteristics (e.g., be verifiable and unambiguous), and they must 
have been properly specified sufficiently early in the development process to drive the 
development of the architecture. 

Note however that as a system architecture quality assessment method, QUASAR does 
not include the requirements engineering tasks during which the architecturally signifi-
cant quality goals and requirements are derived and allocated to the subsystems, the ar-
chitecture of which is being assessed. However, it is critical to ensure that such goals 
and requirements do exist so that the architecture support for enabling the system to 
achieve these goals and meet these requirements can be assessed. Therefore, QUASAR 
does include a Subsystem Requirements Review Phase during which the quality and ma-
turity of these goals and requirements is reviewed so that any problems can be fixed in 
time for these quality goals and requirements to properly drive the development of the 
architecture and for the architecture to be properly assessable. 

4. Determine requirements compliance. 

Regardless of the contractual formality of the customer requirements, the development 
organization will still need to derive and specify new, more detailed technical require-
ments at the system level. Some of these requirements will (or at least should) be archi-
tecturally significant, and this includes support for quality requirements, functional re-
quirements, data requirements, interface requirements, and architectural constraints.7 
When developing software-intensive systems, architecturally significant requirements 
will typically be derived and allocated to individual subsystems, lower level sub-
subsystems, and so on. A major objective of QUASAR system architecture assessment is 
to determine compliance of the system and subsystem architectures with their derived 
and allocated architecturally significant requirements. 

5. Determine architecture completeness and maturity. 

A software-intensive system must typically be developed using an iterative, incremental, 
and parallel development cycle.8 During incremental and iterative development, the ar-

                                                 
7 Note that the quality requirements are not the only drivers of the system architecture. Major sys-

tem functions equate to cohesive sets of functional requirements, and unlike modern software, sys-
tems still tend to be primarily functionally decomposed. This leads to a natural tension between 
the functional and quality requirements that the system architects must resolve. The system and 
subsystem architects must also take other business and programmatic drivers into account and per-
form engineering tradeoffs between them and the quality requirements. For example, it must be 
feasible to implement the architecture in terms of program budget, schedule, staffing levels, and 
staffing experience. Mass-produced systems must also be producible in terms of the production 
costs, the development organization’s manufacturing facilities, and supply chain characteristics. 

8 Development is parallel if multiple activities (e.g., requirements engineering and architecting or 
the engineering of multiple subsystems) are performed concurrently. 
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chitecture of a system or subsystem must reach a minimum level of completeness and 
maturity, respectively, if it is to be properly and completely assessed. Architectural deci-
sions must have been made and properly documented before it becomes possible for the 
quality of the resulting architecture to be assessed. Typically, an assessment should be 
postponed if the architecture being assessed is not ready for the assessment. 
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Figure 1: Assessment Scope in Terms of Subsystems9

                                                 
9 In Figure 1, the acronym CI denotes configuration item, while C indicates component. Architec-

tural elements below CI should probably be considered to be part of the design rather than part of 
the architecture. 
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Any non-trivial system is typically decomposed into subsystems, sub-subsystems, and so 
forth. As illustrated in Figure 1, this decomposition hierarchy of systems into subsystems 
is often organized into a series of horizontal tiers (e.g., system of systems, systems, sub-
systems, and sub-subsystems10 such as segments, subsegment, assemblies, subassem-
blies, and so on) to manage complexity and improve human understandability. Architec-
turally significant requirements will be iteratively and incrementally engineered, with 
new, ever-more-detailed requirements being derived and allocated to lower level archi-
tectural elements. The architectures of these subsystems will be iteratively and incre-
mentally developed in parallel with their allocated requirements. This clearly means that 
some subsystem architectures will be available for assessment before others, making it 
impossible to assess all subsystem architectures simultaneously, unless one waits until 
the entire system architecture is completed. However, waiting to the end of system archi-
tecting before assessing the architecture of existing subsystems eliminates the advan-
tages of the early assessment of architecture. Instead, one must incrementally and itera-
tively assess the quality of these subsystem architectures before they become “chiseled 
in granite” with too much design and implementation being based on them to make fix-
ing any architectural defects or sub-optimizations practical. 

System architecture quality assessments should be performed in a top-down manner, tier 
by tier, as part of the natural top-down incremental decomposition of the system archi-
tecture.11 Some subsystem assessments are scheduled before others within given builds 
(blocks or increments12), some subsystem assessments are postponed until later builds, 
and some subsystem assessments will only be partially performed during one build and 
completed during later builds when the remaining parts of the subsystem architecture are 
completed. Thus, the growing completeness and maturity of the architecture will have a 
significant impact on the scope and schedule of architecture assessments. 

As illustrated in Figure 1, the scope of the overall system architecture quality assessment 
is determined iteratively and incrementally, based on the decomposition of the system 
into lower level tiers of subsystems, sub-subsystems, and so on. This figure shows the 

                                                 
10 Note that the number of tiers and the naming conventions used for the architectural elements at the 

different levels of the architecture is relatively arbitrary. From this point on, we will, for the sake 
of simplicity, use the term subsystem to mean any lower level architectural element, regardless of 
its tier (level) in the system decomposition hierarchy. 

11 Whereas performing architecture assessments in an incremental, top-down manner fits well with 
modern development cycles, it raises the problem of how to assess the overall highest level archi-
tecture of an entire system or system of systems. Huge heterogeneous systems are often decom-
posed into top-level subsystems that have little architecturally in common with each other and are 
developed by unrelated organizations (e.g., subcontractors). Thus, there may be little in the way of 
overall architecture integrity, and most of the actual architecture decisions reside at lower tiers of 
the architecture. 

12 Although the term increment is often used to label a single pass through the development cycle, 
use of this term is misleading. Modern development cycles are incremental, but they are also itera-
tive, parallel, and time-boxed.  
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hypothetical boundary of such a system architecture quality assessment based on the 
criticality of the quality of the lower level subsystem architectures to the quality of the 
overall architecture, as well as the available resources that can be invested in performing 
the lower level assessments. Basing the scope of assessment on the size, complexity, and 
criticality of the subsystems to be assessed typically results in a ragged lower boundary 
between those subsystems that are assessed and those that are not. 

In addition to influencing the scheduling of the assessments, the completeness and ma-
turity of the architecture is important for measuring project progress, especially when 
developing software-intensive systems using an iterative and incremental development 
cycle. Because architecture completeness and maturity is not indicated by the comple-
tion of a single architecture document, management and customer oversight require an 
objective and independent assessment of architecture completeness and maturity. To 
provide management with independent and objective metrics describing the develop-
ment status of the system and subsystem architectures, it is often important to independ-
ently assess the status of these architectures. 

Because a minimal level of architectural maturity13 is needed before a system architec-
ture quality assessment can be successfully performed, stakeholders can ask the follow-
ing questions when scheduling assessments: 

− Requirements engineered? 
Have the relevant architecturally significant quality requirements been properly de-
rived and allocated to the subsystems, the architecture of which is to be assessed? 

− Architecture exists? 
Does all of the system/subsystem architecture within the scope of the assessment ex-
ist? Will all of the architectural decisions have been made by the time that the archi-
tecture is to be assessed? 

− Architecture properly documented? 
Is this architecture adequately and properly documented in terms of official project 
architectural diagrams, models, and documents? By “official,” we mean formally 
planned project documentation under configuration control, rather than informal, 
temporary documentation (e.g., slides developed just for the sake of the assessment). 

− Milestones? 
Will the architecture to be assessed be sufficiently complete so that the assessment 
results can support a major programmatic milestone such as Preliminary Design Re-
views (PDRs) and Critical Design Reviews (CDRs)? 

 
In light of these questions, an important secondary objective of the QUASAR assess-
ment is to perform an objective, independent assessment of the completeness and matur-
ity of the system architecture in terms of the completeness and maturity of its associated 
subsystem architectures so that the results can be reported to stakeholders. 

                                                 
13 An architecture can be considered “mature” when its rate of iteration (change) slows to the point 

where it becomes relatively stable. 
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6. Determine architecture consistency and integrity. 

The development of a software-intensive system involves the successive decomposition 
of the system into subsystems, sub-subsystems, and so on. Unfortunately, because of 
schedule constraints and other factors, it is difficult or impossible to develop a system’s 
architecture in a truly top-down manner. Subsystem architectures are developed in paral-
lel with each other as well as in parallel with the architecture of their higher level parent 
subsystems. Therefore, inconsistencies tend to develop between subsystem architectures, 
creating a danger that architectural integrity will be lost. 

Architectures are consistent to the extent that they incorporate the same architectural de-
cisions to solve similar problems in similar contexts. They tend to incorporate the same 
architectural styles, patterns, and mechanisms. This leads members of the architecture 
and assessment teams to ask the following questions concerning architecture consis-
tency:14

− Consistent vertically? 
Are the architectures of subsystems consistent with the architectures of related sub-
systems at both higher levels and lower levels in the overall system architecture’s de-
composition hierarchy?  

− Consistent horizontally? 
Are the architectures of related (e.g., interoperating) subsystems at the same level of 
the tier structure consistent? 

− Consistent across specialty architectures? 
Is there consistency among the various types of specialty architectures such as the 
hardware architecture, software architecture, database architecture, safety architec-
ture, and security architecture? 

− Consistent support for quality factors? 
Are the architectural decisions made to support the various types of quality require-
ments consistent across subsystems? Are the architecture decisions supporting indi-
vidual types of quality requirements consistent with the types of engineering trade-
offs that must be made between competing quality factors (e.g., increasing 
performance may decrease maintainability and increasing security may decrease us-
ability)? 

− Consistent across development groups? 
Are architectures consistent across multiple 
− corporations (e.g., prime contractor and subcontractors)? 
− organizations and teams (e.g., subsystem development teams) within a single cor-

poration? 
− groups at distributed development locations? 

                                                 
14 Two architectures are consistent to the extent that they incorporate the same architectural deci-

sions to solve similar problems in similar contexts. Consistent architectures tend to incorporate the 
same architectural styles, patterns, and mechanisms. 
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QUASAR assessments can be used to determine the consistency of the subsystem archi-
tectures of an overall system’s architecture. As a way of identifying a lack of architec-
tural consistency, QUASAR assessments can help the system architects enforce architec-
tural integrity down through the system architecture’s aggregation hierarchy of 
subsystems. 

7. Help architects develop, document, and improve their architectures. 

Developing a good quality architecture that meets all of the architecturally significant 
requirements is a very difficult task, especially given the size and complexity of many of 
today’s systems and especially systems of systems. The architecture of modern systems 
is huge, consisting of many subsystems, sub-subsystems, and so on, that must collabo-
rate in complex ways to meet huge numbers of stringent requirements. The behaviors of 
such systems are also highly complex. By ensuring the timely existence of architectur-
ally significant requirements and by helping to ensure that the architect’s focus remains 
on achieving these requirements, the architects are more likely to correctly make and 
properly document the associated architectural decisions. A major objective of 
QUASAR assessments is therefore to help the architects create and document their ar-
chitectures and properly prepare for the associated assessments. The architects can then 
identify the architectural defects and weaknesses found during the assessments and im-
prove their architectures moving forward.15

8. Identify architecture defects early. 

The quality of a system’s architecture is critical because any defects of either commis-
sion (poor architectural decisions) or omission (missing architectural decisions) in the 
architecture will flow down into lower level subsystem architectures as well as the re-
sulting designs and implementation. Thus, the assessment should begin to verify the ar-
chitecture’s support for architecturally significant quality requirements early, prior to 
significant design so that any areas of non-compliance can be corrected with an accept-
able negative impact on the cost and schedule of the project. In other words, the assess-
ment should identify architecture defects and risks during architecture development as 
opposed to after the system has been implemented and is under test when architectural 
defects are difficult and costly to repair. A major objective of QUASAR assessments is 
thus to identify architectural (strategic) defects early in the development cycle and be-
fore they are propagated throughout they system, resulting in many design and imple-
mentation (tactical) defects. 

9. Manage architectural risks. 

Because the architecture of a software-intensive system is large and complex, it will be 
practically impossible for the system architects to get everything right at the start of the 
architecture development. Combining the probability of architectural defects with the se-
rious harm that they typically cause yields a significant system architecture risk. Thus, a 

                                                 
15 Defects and weaknesses are found by the architects when preparing for the assessments and by 

assessors during the actual assessment. Both lead to iterative improvement of the architecture. 
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major objective of QUASAR assessments is to help lower these architectural risks to an 
acceptable level by lowering the probability of architectural defects and increasing the 
probability that the remaining defects are found sufficiently early in the development 
cycle so that the can be fixed and their negative consequences either eliminated or miti-
gated. Major subordinate QUASAR objectives are to 
− identify major architectural risks, as well as strengths, to the extent practical given 

the limited duration and depth of the assessments 
− make an initial estimate of the criticality (magnitude of negative impact) and prob-

ability of occurrence of the architectural risks that are identified 
− identify system architecture risks early in the program when they can be effectively 

mitigated 
− identify quality requirements that are not adequately supported by the architecture so 

that they can be tracked 

10. Provide stakeholder visibility into the architecture. 

A system’s architecture has many stakeholders that need timely visibility into the archi-
tecture. Customer and user organizations want visibility into the architecture to ensure 
that the system they are acquiring will meet the architecturally significant requirements 
and possess the necessary qualities. The requirements team wants visibility to ensure 
that the architecturally significant requirements they engineered will be met by the re-
sulting system. The designers, implementers, and testers want confidence that the archi-
tecture that drives their work has sufficient quality and will not need to be significantly 
altered, thereby invalidating their designs, implementations, and integration tests. Man-
agers want to verify that the architecture can be implemented within budget and sched-
ule constraints. A properly performed architecture assessment provides either direct visi-
bility into the architecture, if the stakeholders are part of the assessment team, or provide 
them confidence that they can rely on the architectural models and documents, if they 
are not part of the assessment team. 

Under current DoD acquisition practice, the defense contractor is given either capability 
or performance-based requirements and is responsible for the development and delivery 
of a system that meets these requirements. Typically, the defense contractor has little ob-
ligation to deliver specific architecture documentation to the program management of-
fice (PMO) early in the development process. The PMO also needs visibility into the 
technical architecture of the system; a series of system architecture assessments is one 
way for engineering personnel in the PMO to obtain that visibility and leverage. 

11. Provide acquisition oversight of the architecture. 

If the acquiring organization is funding the development of the system, then it assumes 
acquisition oversight responsibilities. It is important that the acquirer ensures that the 
system is being developed appropriately. This includes ensuring that the system architec-
ture is being properly developed by assessing and approving development work products 
such as architectural models and documentation. A system architecture assessment is an 
appropriate method for doing so. 
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A system architecture assessment is a technical evaluation of the architecture’s quality 
and as such should not typically be part of major milestone reviews, which are at a 
higher managerial level. Milestone reviews are often used by the defense contractor to 
convince the PMO that they have achieved a specific milestone, thereby justifying the 
associated payment of funds. System architecture quality assessments should instead be 
performed incrementally and iteratively prior to the associated milestone reviews, which 
need only summarize the results of the system architecture assessments. 

This being said, it is critical that acquisition personnel understand the quality and com-
pleteness of the system architecture as well as any significant architectural risks at the 
major milestone reviews such as PDRs or CDRs. Thus, the system architecture quality 
assessment becomes the basis for the PMO’s approval of the architecture and system at 
the milestone reviews. 

If system architecture quality assessments are to be used to technically prepare for major 
milestone reviews, then this should be included in the request for proposal (RFP) and 
contract. 

12. Develop consensus. 

The assessment should ensure that a consensus between the teams is developed regard-
ing the meaning of the quality factors and the associated quality requirements that the 
architecture being assessed must fulfill.16  

13. Ensure usability of architecture documentation. 

The assessment should help ensure that the architecture’s documentation is usable by 
stakeholders like acquisition personnel, users, developers, testers, safety and security 
engineers, and maintainers. 
− Is the system architecture documented in a format that is usable by all the relevant 

stakeholders? 
− Is the system architecture documentation organized in a way that allows stakeholders 

to locate information of interest?  
− Does the system architecture documentation provide adequate detail without over-

whelming readers?17 
The objectives of system architecture quality assessments vary depending on the organization 
that is responsible for performing the assessment. Assessments, for example, may be per-
formed by the 

• architecture team, as part of a team-internal technical assessment 

• development organization, as part of an organizational-internal quality assessment 

• customer organization, as part of its independent oversight or verification duties 

                                                 
16 If consensus cannot be reached, an action item must be created and tracked to resolution. 

17 Although this is difficult to achieve in practice, it nevertheless should be a goal to be strived for. 
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2.2 Philosophy of Architecture Assessment 
• Quality requirements drive the architecture. 

An architecture is insufficient if it only supports the performance of its allocated func-
tional requirements. Rather, the quality of the architecture (and acceptability of its sys-
tems) is largely based on how well the architecture also supports its allocated quality re-
quirements. This is true whether or not these quality requirements have been explicitly 
derived and allocated to the architecture. Thus, it is not just what the architecture enables 
a system to do, but rather how well it enables the system to do it (i.e., how well it sup-
ports its allocated “-ilities”). For example 
− The architecture may be layered and modular to support the meeting of maintainabil-

ity requirements. 
− The architecture may include a commercial off-the-shelf (COTS) real-time operating 

system and deterministic scheduling to support the meeting of performance require-
ments. 

− The architecture may include redundant hardware to support the meeting of availabil-
ity and reliability requirements. 

• The safety cases approach can be generalized for quality cases. 

The safety case approach developed within the safety community can be generalized and 
reused for other quality factors. Specifically, it forms the basis for an architecture as-
sessment method for verifying the sufficiency of architectural support for other types of 
quality requirements. 

• Architects make their cases to assessors. 

The architects are responsible for successfully making their case to the assessors that 
their architecture sufficiently supports achieving the architecturally significant quality 
requirements. The assessment team should not have to work hard to determine what the 
architects have done. The assessment team’s liaison to the architecture team should not 
have to make the architecture team’s arguments and identify and provide their evidence 
for them. 

• Arguments must be clear and compelling. 

To pass the assessments, the architects must convince the assessors that the architecture 
adequately supports the system’s meeting its quality requirements. Therefore, the archi-
tects’ arguments (i.e., presentation and documentation of architectural decisions and as-
sociated rationales) must be clear and compelling. 

• Evidence must be credible. 

Unless the architects provide proper evidence, their case that the architecture adequately 
supports its derived and allocated quality requirements is not credible. Relying merely 
on the verbal assurances of the architects boils down to little more than the “trust me” 
argument. The cases must be based on real evidence; the evidence is not real unless it is 
in the project’s official architecture documentation (e.g., under configuration control). 
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Verbal discussions and “quick and dirty” PowerPoint presentations developed specifi-
cally for the assessment are not acceptable evidence, although they can be quite useful in 
helping to determine how well the architecture team understands its architecture. 

• Assessors probe architects’ cases.  

Although the architects are responsible for successfully making their quality cases to the 
assessors, it is not appropriate to rely on them to make perfect quality cases. After all, it 
is not uncommon for the architects to be overly confident that their architectural deci-
sions are adequate to ensure that their system and subsystem architectures sufficiently 
support the ability of the system and subsystems to meet the derived and allocated qual-
ity requirements. Architects also naturally tend to present their best arguments and 
downplay any known weaknesses in their architectures. 

Therefore, assessors should not be a passive audience during the architects’ presentation 
of quality cases. For one thing, the assessors are responsible for properly preparing to 
hear the architects’ quality cases; they must learn about the architectures by reading the 
architects’ preparatory materials. More importantly, the assessors are responsible for us-
ing this understanding to actively probe the architects’ quality cases for any potential 
weaknesses and risks. Note that to be able to do these two things, the assessment team 
must contain assessors who are skilled system architects with backgrounds in either 
relevant specialty engineering areas (e.g., reliability engineering, safety, security) or 
relevant application domains (e.g., communications, power supply, propulsion, sensors).   

2.3 Assumptions 
The QUASAR method is based on the following assumptions about the system that is being 
architected: 

1. The system is large and incrementally and iteratively developed. 

Assumptions: The system is very large and complex, requiring it to be iteratively and 
incrementally developed. 

Consequences: 
a. The system has a large number of architecturally significant derived requirements 

that have been allocated to multiple levels within the system architecture. 
b. The system’s architecture is very large and complex. 
c. Both the architecturally significant requirements18 and the associated architecture 

are being developed in an incremental and iterative manner. 

                                                 
18 Even if the requirements are “officially” being engineered using a waterfall approach, in practice 

they will actually be engineered in an incremental and iterative manner. Regardless of whether or 
not the requirements are being developed incrementally and iteratively, a software-intensive sys-
tem will almost certainly be architected in this manner. Typically, as the system is decomposed 
into subsystems and sub-subsystems, these subsystems will be architected in a top-down manner. 
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d. It is impractical to adequately assess the entire system architecture all in one step; 
architecture assessments must also be performed in an incremental and iterative 
manner. 

2. Quality requirements are important architecture drivers. 

Observations: In practice, system requirements engineering tends to concentrate on 
functional requirements. Unlike software which currently tends to be decomposed using 
object-oriented design methods, systems tend to be functionally decomposed into sub-
systems and sub-subsystems that are functionally cohesive. Quality requirements (e.g., 
availability, capacity, efficiency, interoperability, modifiability, performance, portability, 
producibility, reliability, reusability, robustness, safety, scalability, security, testability, 
and usability) tend to be poorly and incompletely engineered. Quality requirements 
greatly influence the quality, acceptability, and architecture of the system. 

Consequences: 
a. Because functional requirements and the functional decomposition of systems into 

functionally cohesive subsystems are emphasized, system architectures tend to be 
driven by and map reasonably well to the meeting of functional requirements.  

b. In practice, the risk that systems will not meet their quality requirements is larger 
than the risk that they will not meet their functional requirements. 

c. Because quality requirements are primary drivers of the architecture, the architec-
ture assessment method should concentrate on assessing whether or not the archi-
tecture sufficiently helps the system and its subsystems meet their derived and allo-
cated quality requirements. 

3. Quality requirements are often missing or of poor quality. 

Observations: In practice, many architecturally significant quality needs are never 
specified as quality requirements and many of those that are specified are poorly speci-
fied. They tend to be vague goals such as “the system shall have high availability” or 
“the subsystem shall highly interoperable” rather than actual requirements that are com-
plete, consistent, feasible, unambiguous, and verifiable. 

Consequences: 
a. The maturity and quality of the quality requirements must be reviewed sufficiently 

early to enable them to be corrected in time for them to drive the architecture and to 
enable the architecture to be properly assessed. 

b. Quality goals and requirements are often pushed down “as is” to lower level sub-
systems without being properly derived to be more detailed and specific. 
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3 Quality Cases 

Each subsystem architecture team is responsible for convincing the assessment team that 
their subsystem architecture adequately supports the subsystem’s ability to fulfill the derived 
quality goals and meets the derived quality requirements that have been allocated to the sub-
system. After all, who else better knows the 

• quality goals and quality requirements that drove their architectural decisions 

• architectural decisions (e.g., selection of architectural patterns and use of architectural 
mechanisms) they made and why they made them 

• where in the architectural documentation they explicitly document decisions and associ-
ated rationales 

In other words, the members of the subsystem architecture team 

• make claims to the assessment team that the subsystem architecture adequately supports 
the subsystem’s ability to 
− fulfill the derived quality goals 
− meet the derived quality requirements 

• present clear and compelling arguments to the assessment team as to why the assessment 
team should believe that  
− they made certain architectural decisions 
− they made appropriate decisions 
− the combination of these decisions is adequate to justify belief in their claims 

• provide sufficient evidence to the assessment team supporting their arguments  
In other words, trustworthy evidence that 
− they actually made the architectural decisions that they argue they did 
− these were appropriate and sufficient decisions to justify belief in the subsystem ar-

chitecture team’s claims 
In the QUASAR method, the way for a subsystem architecture team to make their case to the 
assessment team is to produce a set of quality cases and formally present them to the assess-
ment team. Thus, the foundation on which the QUASAR method is based is the concept of a 
quality case, which is a generalization of the safety case approach developed within the safety 
community.  
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3.1 Definition of Quality Cases 
As illustrated in Figure 2, quality factors (e.g., interoperability, performance, safety, or secu-
rity) define a single type of quality of a system or subsystem. A quality factor is typically de-
composed into one or more quality subfactors. For example, the quality subfactors of per-
formance are jitter, latency, response time, schedulability, and throughput. Because a single 
quality case is specific to a quality factor or one of its quality subfactors, quality cases can be 
classified as interoperability cases, performance cases, safety cases, security cases, and so 
on.19 A quality case consists of a set of related 

• Claims 

Claims are the developers’ assertions that the system or subsystem adequately achieves 
its allocated quality goals and meets its allocated requirements. 

• Arguments 

Arguments are the developers’ clear and compelling reasons that justify belief in the as-
sociated claims (i.e., reasons why the assessors should believe that the system or subsys-
tem adequately meets its allocated goals and requirements). 

• Evidence 

Evidence is sufficient credible documentation (or witnessed demonstrations) that sup-
ports the developers’ arguments. 

Quality Case

Claim Argument Evidence
justifies belief in supports

makes the case for the quality of a
System

Subsystem

Quality Factor

Quality Subfactor

is specific to a

defines a type of quality of a

defines a part of a type of quality of a

 

Figure 2: Structure of Quality Cases 

Typically, a quality case is constructed near the end of development and its arguments and 
evidence address all major project disciplines (requirements, architecture, design, implemen-
tation, integration, and testing). This allows the quality case to make a strong case for the 

                                                 
19 Note that this is the structure of a general quality case and is not restricted to an architecture-level 

quality case. 
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quality of the completed system or one of its completed subsystems. However, such a com-
plete quality case would be constructed and presented much too late in the development cycle 
to be used as the foundation for an architecture quality assessment. 

Therefore, the QUASAR method uses architecture quality cases that are restricted to archi-
tectural information. As illustrated in Figure 3, an architecture quality case consists of 

• Architectural Claims 

Architectural claims are the architects’ assertions that the system/subsystem architecture 
sufficiently supports the system/subsystem ability to achieve its allocated quality goals 
and meet its allocated requirements. 

• Architectural Arguments 

Architectural arguments are the subsystem architects’ clear and compelling reasons that 
justify belief in their claims. These are typically the architects’ architectural decisions 
(e.g., use of appropriate architectural components, mechanisms, or patterns) that com-
pose the reasons why the assessors should believe that the architecture adequately sup-
ports the fulfillment of the derived quality requirements that have been allocated to the 
subsystem.

• Architectural Evidence 

Architectural evidence is sufficient credible20 evidence to support the architects’ argu-
ments (e.g., adequate official project architecture diagrams, architecture models, archi-
tecture documents, and executable architectural prototypes). 

Quality Case

Claim Argument Evidence
justifies belief in supports

Architectural
Quality Case

makes the case for the quality of a
System

Subsystem

Architecture

has an

makes the case for the quality of an

Architectural
Argument

Architectural
Evidence

supportsArchitectural
Claim

justifies belief in

 

Figure 3: Structure of Architectural Quality Cases  

                                                 
20 To be credible, evidence should be official, relevant, correct, current, and under configuration con-

trol. 
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3.1.1 Claims 
In a quality case, a claim is defined as an assertion made by the development team to the as-
sessment team that the system or subsystem either adequately achieves one or more related 
quality goals or meets a set of one or more associated quality-related requirements that have 
been allocated to it.  

The following are important consequences of this definition: 

• A claim is not just any assertion. A claim is related to one or more related quality goals 
or to an associated set of one or more quality-related requirements. A claim is therefore 
related to a specific quality factor. One claim may be about interoperability, a second 
claim may be about performance, and a third claim may be about safety. If a relevant 
quality factor has important quality subfactors, then there may also be claims about 
them. For example, a performance claim may be decomposed into claims about response 
time and throughput. The quality factor related claim “subsystem X will have high per-
formance” can be decomposed into the quality subfactor claims “subsystem X will ex-
hibit a rapid response time” and “subsystem X will have a high throughput.” As a natural 
part of requirements engineering, such high-level goals should be engineered into de-
rived performance requirements such as “under normal operating conditions, subsystem 
X shall respond to stimulus Y within Z milliseconds” and “when in disabled mode A, 
subsystem B shall on average complete at least C transactions of type D per second.” 

• During a quality assessment, a development team makes a series of claims to an assess-
ment team with the goal of convincing the assessment team of the validity their claims 
concerning the quality of the system or subsystem. The development team therefore at-
tempts to justify the assessors’ belief in these claims by using clear and compelling ar-
guments based on supporting evidence. 

• A claim can be made either about the entire system or about one of its subsystems. How-
ever, more claims are naturally made about subsystems than the overall system because 
there are more subsystems. 

• A claim can be made about either achieving a quality goal or meeting a set of associated 
quality-related requirements. Ensuring that the system or subsystem meets a cohesive set 
of consistent, feasible, unambiguous, and verifiable requirements is almost always much 
more important than the achievement of more general goals. 

Architectural quality cases contain system or subsystem architectural claims rather than the 
more general system or subsystem claims. These architectural claims are either about the ar-
chitecture of a system or about the architecture of one of its subsystems. In an architectural 
quality case, an architectural claim is defined as an assertion made by an architecture team to 
an architecture assessment team that the system or subsystem’s architecture adequately helps 
the system or subsystem either achieve one or more related quality goals or meet a set of one 
or more associated quality requirements that have been allocated to it. 
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The preceding definition of an architectural claim implies that 

• The architectural claim is limited. Just because a system or subsystem has an adequate 
architecture does not mean that the system or subsystem will achieve its quality goals or 
will meet all of its associated quality requirements after it is implemented. Defects in de-
sign, implementation, and integration cannot be overcome by the architecture, no matter 
high its quality. Having a good architecture is a necessary but insufficient condition for 
achieving overall quality goals and meeting requirements. 

• An architectural claim can be made either about the system-level architecture or about 
the architecture of one of its subsystems. As before, more claims are made about subsys-
tem architectures than the overall system architecture because there are more subsys-
tems. 

• An architectural claim can be made about either achieving a quality goal or meeting a 
set of related quality requirements. 

As illustrated in Figure 4, there are many different kinds of architectural claims that the sys-
tem or subsystem architecture teams could make. First of all, there are many different kinds 
of quality factors and quality subfactors that might be important drivers of the architecture. 
Secondly, claims can be about achieving quality goals or meeting quality-related require-
ments. The claims about achieving quality goals can be further subdivided into goals related 
to the overall quality factor or to one of its quality subfactors. Quality-related requirements 
can also be about meeting minimum mandatory levels of quality factors and subfactors, but 
they can also be about other related requirements. Unlike quality requirements, quality-
significant requirements are any normal functional, data, or interface requirements with qual-
ity ramifications. Quality subsystem requirements are requirements for any subsystem, the 
sole purpose of which is to achieve that quality. Thus, all of the requirements for a fire detec-
tion and suppression subsystem are quality subsystem requirements. Finally, constraints 
mandating certain quality mechanisms are called quality constraints. 
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Figure 4: Types of Architectural Claims 

Consider an automated people mover (APM) system decomposed into a taxi subsystem (i.e., 
the taxis), a guideway21 subsystem (i.e., the concrete guideways on which the taxis drive), a 
taxi station subsystem, and a central control subsystem. The following are examples of the 
different kinds of safety claims that the architects might make when constructing its safety 
cases: 

                                                 
21 Guideway is the industry standard term for the path (e.g., concrete road, monorail, or train tracks) 

along which an APM travels. 
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1. Safety Goal Claims 
a. Safety Factor Goals 

− System Is Safe to Use and Operate 
The architecture of the automated taxi system adequately supports the system 
achieving the following safety factor goal: “The automated taxi system will be 
safe to use and operate.” 

− Taxis Are Safe to Use 
The architecture of the automated taxi subsystem adequately supports the subsys-
tem achieving the following safety factor goal: “The automated taxi subsystem 
will be safe for its passengers to use.” 

b. Safety Subfactor Goals 
− System Prevents All Accidents 

The architecture of the automated taxi subsystem adequately supports its achiev-
ing the following harm prevention safety subfactor goal: “The automated taxi 
subsystem will help it to avoid injuring its passengers.” 

− System Detects All Guideway Hazards 
The architecture of the automated taxi subsystem adequately supports its achiev-
ing the following hazard detection safety subfactor goal: “The automated taxi 
subsystem shall detect all guideway hazards (e.g., stalled vehicle or unlocked 
switch).” 

− System Reacts to All Accidents 
The architecture of the automated taxi subsystem adequately supports its achiev-
ing the following accident reaction safety subfactor goal: “The automated taxi 
subsystem shall properly react to all detected accidents.” 

2. Safety-Related Requirements Claims 
a. Safety Requirements 

− Taxi Shall Avoid Rear-Ending Other Taxis 
The architecture of the automated taxi subsystem adequately supports its meeting 
the following safety requirement: “A taxi shall not rear-end a taxi in front of it 
more than twice a year, whereby rear-ending means a collision with a relative 
impact speed of 1 kilometer per hour or more.” 

− Taxi Shall Detect Collisions 
The architecture of the automated taxi subsystem adequately supports its meeting 
the following safety requirement: “At least 99.9% of the time, a taxi shall detect 
if it collides with another taxi with a relative speed of more than 2 kilometers per 
hour.” 

− Taxi Shall Report Collisions 
The architecture of the automated taxi subsystem adequately supports its meeting 
the following safety requirement: “At least 99.9% of the time upon detecting a 
collision, the automated taxi subsystem shall notify the command subsystem 
within 5 seconds that it has been involved in the collision.” 

b. Safety-Significant Requirements 
− Taxis Shall Know Velocity 

The architecture of the automated taxi sensor sub-subsystem (SS) adequately 
supports its meeting the following safety-significant requirement: “The auto-
mated taxi SS shall determine the velocity of the taxi relative to the guideway 
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with an accuracy of 0.2 kilometers per hour and a precision of within ± 0.1 me-
ters per second.” 

− Taxis Detect Headway 
The architecture of the automated taxi SS adequately supports its meeting the fol-
lowing safety-significant requirement: “The automated taxi SS shall detect if the 
next taxi in front of it gets within its headway (i.e., the safe stopping distance) [as 
indicated by table X].” 

− Taxis Obey Speed Limit 
The architecture of the automated taxi power braking subsystem (PBS) ade-
quately supports its meeting the following safety-significant requirement: “Sub-
ject to guideway speed limits, the PBS shall be able to accelerate the taxi up to a 
maximum forward velocity of 80 kilometers per hour.” 

c. Safety Subsystem Requirements 
− Smoke Detector Sensitivity 

The architecture of the automated taxi fire detection and suppression sub-
subsystem (FDSS) adequately supports its meeting the following safety subsys-
tem requirement: “At least 99.9% of the time, the FDSS shall detect smoke parti-
cles larger than 0.01 micrometers in concentrations more than 10,000 particles 
per cubic centimeter.” 

− Smoke Detection Reliability 
The architecture of the FDSS adequately supports its meeting the following 
safety subsystem requirement: “The FDSS shall have a reliability of more than 
99.9%.” 

d. Safety Constraints 
− Seat Belts 

The architecture of the automated taxi subsystem incorporates the following 
safety constraint: “The automated taxi subsystem shall provide standard COTS-
based automotive seat belts for all passengers. 

− Safety Glass 
The architecture of the automated taxi subsystem incorporates the following 
safety constraint: “The automated taxi subsystem shall use COTS safety glass for 
all windows.” 

3.1.2 Arguments 
In a quality case, an argument is defined as a reason given by a development team to an as-
sessment team that justifies belief in a claim. Therefore in an architecture quality case, an 
architectural argument is defined a reason given by an architecture team to an architecture 
assessment team that justifies belief in an architectural claim. The following are important 
consequences of this definition: 

• Arguments should be clear and compelling if they are going to convince the assessment 
team that belief in the claims is justified.  

• Arguments should be backed up by sufficient, legitimate evidence. 
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• As illustrated in Figure 5, arguments are a combination of the architects’ 
− architectural decisions such as the 

− use of appropriate architectural pattern, style, or mechanism 
− incorporation of a specific architectural component 
− use of a specific general way architectural components should collaborate to meet 

the allocated quality goals and quality requirements 
− rationales for why the architectural decisions are appropriate and adequate 
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Figure 5: Structure of Architectural Arguments 

The following are examples of the different safety arguments that architects might make 
when building safety cases for the architecture of an APM: 

1. Arguments for Meeting Safety Requirements 
a. Architecture Decision: Redundant Headway Sensors 
 The automated taxi subsystem (ATS) incorporates redundant ultrasound and laser 

sensors for determining if the automated taxi’s headway is less than its current safe 
stopping distance.22 
Rationale: 
These sensors can be used to ensure that the taxi maintains an adequate headway so 
that it can apply brakes to avoid colliding with the taxi in front of it. 

 
 

                                                 
22  Headway is the distance between an APM vehicle and the vehicle in front of it on the same 

guideway. Headway is used to determine the minimum safe braking distance to be kept between 
adjacent vehicles. A guideway is the concrete road, railroad tracks, or monorail on which vehicles 
travel. 
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b. Architecture Decision: Radio Transmitter 
 The ATS incorporates a COTS very high frequency (VHF) radio transmitter and re-

ceiver. Specifically, it incorporates model X radio from vendor Y. 
Rationale: 
The radio will be used to notify the central control subsystem of accidents and haz-
ards. The selection was based on an industry trade-study, an analysis of vendor-
supplied technical documentation, and a test of prototypes across the range of the 
taxis. 

2. Arguments for Meeting Safety-Significant Requirements 
a. Functional Requirement: Close Taxi Door 

− Architecture Decision: Door Resistance Sensor 
The door subsystem (DS) of the ATS incorporates a door resistance sensor on the 
door motor. 
Rationale: 
The door resistance sensor enables the automated taxi subsystem to determine if 
it its doors are closing on a passenger if a maximum safe torque value is ex-
ceeded. This enables the door subsystem to reopen the doors and automated taxi 
subsystem to know not to move when the door is jammed open. 

− Architecture Decision: Maximum Door Motor Torque 
The DS of the ATS incorporates a COTS door motor that has a safe maximum 
torque rating. 
Rationale: 
The door motor is not strong enough to seriously crush a passenger. 

− Architecture Decision: Door Lock 
The DS of the ATS incorporates a door lock. 
Rationale: 
The door lock can be used to ensure that the door remains closed while the taxi is 
moving. 

− Architecture Decision: Door Lock Sensor 
The DS of the ATS incorporates a door lock sensor. 
Rationale: 
The door lock sensor can be used to ensure that the door remains locked while 
the taxi is moving. 

− Architecture Decision: Speed Sensor 
The power braking subsystem (PBS) of the ATS incorporates a speed sensor. 
Rationale: 
The speed sensor enables the ATS to ensure that the taxi does not move until the 
door is closed and locked. 

− Architecture Decision: Maximum Door Closure Distance 
The DS of the ATS incorporates a door stop. 
Rationale: 
The door stop ensures that a 1.5 inch gap remains when the door is closed and 
locked, thereby ensuring that the door does not crush passengers’ fingers. 

3. Arguments for Meeting Safety Subsystem Requirements 
a. Safety Subsystem: Fire Detection and Control Subsystem 
 

30  CMU/SEI-2006-HB-001 



 

− Architecture Decision: Smoke Detector 
The fire detection and control subsystem (FDCS) incorporates a COTS smoke 
detector in the PBS. 
Rationale: 
An overheated electric motor or brake can generate smoke before catching fire. 

− Architecture Decision: Heat Sensor 
The FDCS incorporates a COTS heat sensor in the PBS. 
Rationale: 
The high temperature of an overheated electric motor or brake can be detected 
before they catch fire. 

− Architecture Decision: Automated Fire Extinguisher 
The FDCS incorporates a COTS fire extinguisher in the PBS. 
Rationale: 
The high temperature of an overheated electric motor or brake can be detected 
before they catch fire. 

− Architecture Decision: Taxi Speed Override  
The FDCS stops the automated taxi door in case of fire. 
Rationale: 
Stopping the taxi enables passengers to exit the taxi onto the guideway footpath. 

− Architecture Decision: Door Lock Override  
The FDCS unlocks the automated taxi door lock in case of fire. 
Rationale: 
Unlocking the taxi door enables passengers to exit the taxi onto the guideway 
footpath. 

4. Arguments for Meeting Safety Constraints 
a. Architecture Decision: Seat Belts 

The ATS provides standard COTS automotive seat belts for all passengers. 
Rationale: 
This decision fulfills the seat belts architecture constraint. It can also protect pas-
sengers from injury during collision. Using standard COTS automotive seat belts 
minimizes price while maintaining quality. 

b. Architecture Decision: Safety Glass 
The ATS incorporates standard COTS safety glass for all windows. 
Rationale: 
This decision fulfills the safety glass architecture constraint. It can also protect pas-
sengers from injury during collision. Using standard COTS safety glass minimizes 
price while maintaining quality. 

3.1.3 Evidence 
In a quality case, evidence is official factual information that clearly proves the truth of the 
architects’ arguments. It is what supports their claims that a system or subsystem achieves 
one or more of its quality goals and meets one or more of its quality requirements. 

In an architecture quality case, evidence is official factual information that clearly proves the 
truth of the architects’ arguments. It is what supports their claims that a system or subsystem 
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architecture helps it to achieve one or more of its quality goals or meet one or more of its 
quality requirements. 

Figure 6 shows the two types of architectural evidence and how they relate to the other com-
ponents of an architecture quality case. 
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Figure 6: Types of Architectural Evidence 

Typical examples of valid evidence that the architects can use to support their arguments in-
clude the following: 

• Official Documentation 

Evidentiary documentation typically includes the relevant parts of the following types of 
official23 endeavor24 documentation: 

− Architecture Documents 
− Documents 

For example, this documentation includes system or subsystem architecture docu-
ments or system or subsystem design documents/descriptions. 

− Presentation Materials 
For example, this documentation includes system or subsystem architecture pres-
entation materials that are made created for official programmatic milestone re-
views, such as PDRs. 

 

                                                 
23  Documentation is typically considered to be “official” and appropriate for use as quality case evi-

dence if it is under configuration control, is being maintained, and is intended to be used as a 
driver for design, implementation, and [especially integration] testing.  

24  The term endeavor is used to clarify that the evidence need not be restricted to an individual pro-
ject. The evidence may belong to a program of related projects (e.g., a product line of programs) 
or to an entire enterprise of related projects and programs. 
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− Training Materials 
For example, this documentation includes system or subsystem architecture train-
ing materials used to train new architects, designers, and testers in the existing ar-
chitecture. 

− Rule Inspection Results 
This documentation reports the results of an inspection to determine how well a 
single architecture follows a common set of architectural rules. These inspection 
results help determine the quality of an individual subsystem and can also be used 
to determine architectural integrity across subsystems. 

− Executable Architecture Test Results 
This documentation includes test reports resulting from the testing of executable 
subsystem architectures. 

− Functional Description Documents 
This documentation includes technical documentation of the allocation of logical 
system functions and their allocation to architectural elements. 

− Interface Description Documents 
This documentation includes technical documentation describing the data and con-
trol interfaces between architectural elements including source, destination, data 
type, communication medium (e.g., electric, fiber-optic, or radio), and protocol 
used. 

− Product Technical Documentation 
This documentation includes vendor-supplied technical documentation describing 
COTS products used as architectural elements. 

− Product Trade Studies 
This documentation includes internally developed or commissioned trade studies 
documenting vendors and their COTS products that have been selected to be used 
as architectural elements. 

− Quality Factor White Papers 
This documentation includes system or subsystem interoperability, performance, 
reliability, safety, and security white papers. 

− Requirements Traceability Matrices 
This documentation includes requirements traceability matrices that map relevant 
quality factors or quality-related requirements to the architectural elements that 
help achieve them. 

− Technology Evaluations 
This documentation includes trade studies and forecasts of the major technologies 
to be used including fore cases of their maturity during various states of develop-
ment and production. 

− Architecture Models 
− Data Models 

These models include logical or physical data models showing data storage or data 
flows. 

− Functional Models 
These models include logical models of the architecture in terms of major system 
or subsystem functions and the data/control flows between them. 
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− Object Models 
These models include models of the major architectural elements in terms of 
classes and the relationships (e.g., inheritance, association, aggregation, message 
passing) between them. 

− State Models 
These models include models of an architectural element’s states and the transi-
tions between these states including substates and transition triggers and guards. 

− Architecture Diagrams 
− Activity/Collaboration Diagrams 

These diagrams show interactions (e.g., messages, data flows, and event traces) 
between architectural elements and external actors and systems. 

− Allocation Diagrams  
These diagrams show the allocation of data and software architectural elements to 
hardware architectural elements. 

− Aggregation Diagrams (Configuration Diagrams) 
These diagrams show how one or more architectural elements are decomposed into 
their component architectural elements and the aggregation relationships between 
them (i.e., the aggregation hierarchy). 

− Context Diagrams 
These diagrams show the relationships between a blackbox system/subsystem and 
the external actors and/or systems with which it interacts. 

− Data Flow Diagrams 
These diagrams show the major data types that flow between architectural ele-
ments. 

− [Hardware] Block Diagrams  
These diagrams show the main hardware architectural elements and how they are 
connected. These are very similar to network diagrams, which concentrate on the 
networks connecting the hardware components as well as the network connectivity 
devices. 

− Hardware Schematics 
These diagrams show the internal “wiring” of the architectural elements and the 
physical “wiring” interfaces of the architectural elements. 

− Layer Diagrams  
These diagrams show the various logical horizontal levels making up the logical 
architecture.  

− Network Diagrams  
These diagrams show the networks and network connectivity diagrams that enable 
the hardware architectural elements and external systems to communicate. These 
diagrams show network types and configurations as well as protocols used. 

− Statecharts or State Transition Diagrams  
These diagrams document an architectural element’s states and the transitions be-
tween these states including substates and transition triggers and guards. 

− Timing Diagrams  
These diagrams show how the real-time operating systems perform time slicing 
and schedule processes.  

− Wiring Diagrams  
These diagrams show how architectural hardware elements are wired together. 
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− Assessor-Witnessed Demonstrations 
− Architecture Simulations  

Observation of the output of architecture simulations  
− Executable Architecture Tests 

Observation of the output of a tests of executable architectures (e.g., architecture 
prototypes)  

− Hardware Components 
Observation of hardware/network physical architecture components and their in-
terconnections in a development laboratory 

Although evidence typically consists of current project architectural diagrams, models, and 
textual documentation that are under configuration control, evidence may also include wit-
nessed demonstrations. For example, demonstrations could include hardware exhibited to and 
directly observed by the assessment team such as the configuration of the subsystems of a 
system prototype seen during a tour of a development lab. 

Architects often submit documentation that provides evidence of architectural intent, rather 
than evidence of the actual architecture. Although of some limited value, the following 
documentation should not be considered to be proper architecture quality case evidence be-
cause it does not document actual architectural decisions (architecture style, architecture pat-
terns, or architecture mechanisms) made to ensure system architecture quality: 

• Architecture Plans 

• Architecture Policies 

• Architecture Rule Lists (and unfilled-out, associated checklists) 

• Architecture Schedules 

• Architecture Team Charters and Memberships 

• Architecture Standards and Procedures 

3.2 Quality Case Diagram 
Based on the preceding definitions, Figure 7 illustrates how architecture quality cases can be 
structured in a fairly standardized manner as a result of their standard content and because 
they are organized by quality factor and quality subfactors into the following: 

• Architecture Claims that the architecture adequately helps the system 
− achieve one or more quality goals 

− quality factor (e.g., interoperability, performance, reliability, or security) 
− quality subfactors of the quality factor (e.g., performance can be decomposed into 

jitter, latency, response time, schedulability, and throughput)  
− meet one or more quality-related requirements 

− quality factor requirement mandating a minimum amount of some quality factor or 
quality subfactor 
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− quality constraint mandating the use of some architecture, design, or implementa-
tion decision related to the quality factor 
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Figure 7: Components of Architectural Quality Cases 

• Architecture Arguments 
− architectural decisions (e.g., use of architectural mechanisms, patterns) 
− rationale that these architectural decisions give the architecture properties that justify 

belief in these architecture claims 
• Architecture Evidence supporting the arguments consisting of the relevant parts of 

− official documentation such as 
− documents 
− diagrams 
− models 

− witnessed demonstrations 
− scenarios 
− simulations (e.g., of executable architecture models or specifications) 
− tests (e.g., of executable architectures) 
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Appendix C.1 defines the most commonly used quality factors and quality subfactors, while 
Appendix E contains several example architectural quality cases. 

Because a software-intensive system may have a large number of significant subsystems 
needing assessment, a large number of system architecture quality assessments may need to 
be performed. In addition, a large number of quality factors (see Appendix C) may be suffi-
ciently important to assess each of these significant subsystems against. Thus, each of these 
subsystem assessments may generate (or make use of) a large number of 

1. Claims (quality factor and subfactor goals and requirements) 

2. Arguments (architectural decisions and associated rationales) 

3. Evidence (relevant parts of diagrams, models, documents, and witnessed demonstra-
tions) 

Architects, assessors, and other stakeholders need ways to deal with this complexity. One 
such way is to organize the quality cases and their component information hierarchically by: 

1. Tier 

Initially, vertically group the assessment information top-down according to tier level 
within the overall system architecture. 

2. Subsystem 

Horizontally group the assessment information about each tier according to subsystem 
(e.g., first by parent subsystem and then alphabetically by subsystem name) 

3. Quality Factor 

Group the assessment information about each subsystem according to the quality factors 
that are relevant to the subsystem, specifically, by the claim that the subsystem architec-
ture adequately supports the achievement of the quality factor (e.g., performance and us-
ability). 

4. Quality Subfactor 

Group the assessment information of the quality factors according to quality subfactor, 
specifically, by the claims that the subsystem architecture adequately supports the 
achievement of the quality subfactors. 

5. Quality Case 

Group the assessment information of the quality subfactors according to individual qual-
ity case. 
a. Claims 
 Finally, group the claims first by quality factor goal claims, second by quality sub-

factor goal claims, and third by quality requirements claims. 
b. Arguments 
 Similarly, group the arguments by architectural decisions and associated rationales. 
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c. Evidence 
 Similarly, group the evidence first by documentation (e.g., diagram, model, and 

document) and by witnessed demonstrations. 

Note that with this approach, there is typically one quality case per quality subfactor. There 
could also possibly be one quality case per quality factor if the quality factor does not have 
multiple, obvious quality subfactors. It is conceivable that one could develop a single com-
pound quality case for each subsystem by combining all of the quality cases for all of the 
relevant quality factors for that subsystem.25 However, such a combined quality case would 
be very large and difficult to understand and navigate. Similarly, one could produce a com-
pound quality case for all subsystems in a tier of the architecture or even a single, mega- 
quality case for the entire system by combining the lower level quality cases. Although pos-
sible in theory, this is inadvisable in practice as it becomes much too large and complex for a 
human to readily comprehend. 

As illustrated in Figure 8, a single quality case can be thought of as a pyramid pointing to the 
architects’ assertion that the system and subsystems architecture helps the system or subsys-
tems being assessed possess an adequate amount of some type of quality. This four-layer 
pyramid consists of 

1. Top-Level Claims 

Top-level claims are claims that “the system/subsystem architecture helps the sys-
tem/subsystem achieve one or more quality factor or quality subfactor goals.” These are 
made verifiable by second-level claims. 

2. Second-Level Claims 

Second-level claims are claims that “the system/subsystem architecture helps the sys-
tem/subsystem meet its associated quality requirements.” The belief in which is justified 
by arguments. 

3. Arguments 

Arguments consist of architecture decisions with associated rationales. Arguments are 
supported on a strong foundation of evidence. 

4. Evidence 

Evidence consists of architectural documentation and demonstrations witnessed by the 
assessors. 

                                                 
25  A quality factor is considered relevant to a system/subsystem if it is architecturally significant and 

if it has been selected as being within scope of the assessments. 
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Figure 8: Layered Structure of Quality Cases 

The pyramid of information composing a quality case can be quite complex. Although it con-
sists of a relatively small number of claims, it can include a sizable number of arguments and 
an even larger amount of evidence (hence the pyramid shape). This large amount of informa-
tion can be overwhelming, especially to the assessors who will not be as familiar with it as 
the architects and especially if it is presented to them only in textual form (not counting any 
evidence in the form of diagrams). Thus, a diagram summarizing the actual content of a qual-
ity case would be useful as an introduction of the quality case and as an aid in navigation 
through its component information.  

But what are the characteristics of such a diagram? Clearly, a quality case diagram and asso-
ciated notation should 

• help the stakeholders (i.e., architects, assessors, and requirements engineers) navigate 
through the potentially quite large amount of information composing a quality case 

• summarize the component information of a quality case so that it helps the stakeholders 
manage the complexity of the quality case 

• clearly differentiate the different types of component information including 
− claims 

− quality factor goal 
− quality subfactor goals 
− quality requirements goals 

− arguments 
− architecture decisions 
− associated rationales 
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− evidence 
− architecture documentation (e.g., diagrams, models, and documents) 
− witnessed demonstrations 

• summarize the layered structure of a quality case including the important relationships 
between the components 

• use a standard notation (e.g., Unified Modeling Language [UML]) that is 
− easy to learn or else is widely known by stakeholders  
− intuitively understandable (e.g., not use large numbers of arbitrary symbols) 
− easy to draw on a single chalk board or white board 
− not required to have sophisticated tool support 
− is nevertheless supported by commonly available tools for inclusion in presentation 

materials (and possibly in deliverable quality case documentation if so desired) 
• be practical in the sense of being both 

− useful on real projects 
− scalable to the size of real quality cases 

Unfortunately, the existing diagramming method (Goal Structuring Notation [Weinstock 04]) 
fails to exhibit many of the positive characteristics in the preceding list. Therefore, this hand-
book introduces Quality Case Diagrams, a specialized UML class diagram specifically de-
signed to exhibit these positive characteristics. The quality case diagram notation consists of 

• class icons (i.e., rectangles) to model the component parts of a quality case 

• UML standard symbols for stereotypes (i.e., the left and right angle quotes: “«” and 
“»”) to signify the different types of components (i.e., claims, arguments, and evidence) 

• explicit labeling (e.g., “Goal:”, “Requirement:”) to clearly differentiate different kinds of 
claims 

• UML standard aggregation symbol (i.e., small diamond) to indicate aggregation 

• unidirectional labeled associations to model the remaining relationships 

Figure 9 is an example quality case diagram summarizing the architecture’s support for inter-
operability. Note that the class icons are placed in horizontal layers to help clarify the direc-
tions of the dependency relationships and to group similar component types. Note also that 

• Belief in a single claim can be justified by multiple arguments. 

• A single argument can justify belief in multiple claims. 

• A single argument can be supported by multiple pieces of evidence. 

• A single piece of evidence can support multiple arguments. 
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Figure 9: Example Quality Case Diagram 
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To make quality case diagrams more understandable, it is useful to order the nodes within a 
single horizontal level of the diagram as follows: 

• alphabetically left to right (e.g., quality subfactor claims) 

• in decreasing order of importance (e.g., arguments – architectural decisions) 

• by node sizes in order to fit nicely when having multiple rows of arguments and evi-
dence 

• to minimize the crossing of lines (usually the most important overriding criteria) 

3.3 Potential Concerns 
By now, it should be clear that safety cases can be generalized to quality cases to handle all of 
the different quality factors and quality subfactors. It should also be clear that quality cases 
can occur earlier in the development process, assessing architecture quality versus assessing 
system quality. However, there are several significant differences between traditional safety 
cases and architectural quality cases. One could argue that these differences are so significant 
that it is inappropriate to use quality cases to assess the quality of system and subsystem ar-
chitectures or that one should modify the QUASAR method or architectural quality cases to 
address any limitations in their use. 

The following subsections provide a brief analysis of these differences and their ramifica-
tions. 

3.3.1 Use All Quality Factors 
Differences: Safety cases and QUASAR architecture cases exhibit the following differences 
in terms of quality factors that are covered: 

• Safety cases are naturally restricted to safety, which is only one of a large number of 
quality factors. 

• QUASAR architecture cases are a kind of quality case. As such, they can be developed 
for any quality factor or quality subfactor, not just safety. 

Ramifications: All quality factors can have associated quality goals and requirements, so the 
architects can make associated claims for any quality factor (i.e., that the architecture ade-
quately supports the system or subsystem to achieve its associated goals and meet its associ-
ated requirements). Similarly, regardless of the quality factor, the architects make architec-
tural decisions that should have associated rationales. Thus, the architects should be able to 
make clear and compelling arguments as to why their architecture justifies belief in their 
claims. Finally, regardless of the quality factor, architects need to document their architec-
tural decisions in diagrams, models, and documentation, enabling them to provide sufficient 
evidence that supports their arguments. Therefore, the type of quality factor does not nega-
tively impact the architects’ ability to create quality cases consisting of claims, justifying ar-
guments, and supporting evidence. In fact, non-safety quality cases should typically be 
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smaller and simpler than safety cases because (1) less information is required because suffi-
cient information to justify formal safety certifications is unnecessary and (2) the scope is 
restricted to only architectural information.  

Not restricting QUASAR architecture cases to only the safety quality factor has a positive 
impact on the QUASAR method. 

3.3.2 All Quality Factors Not Equally Important 
Differences: System quality cases and QUASAR architecture cases exhibit the following 
differences in terms of importance: 

• Safety cases only address system safety and are only developed for safety-critical sys-
tems when safe system usage is critically important. 

• QUASAR architecture cases - The absolute and relative importance different quality 
factors varies from system to system. Although safety is crucial in safety-critical sys-
tems, availability and reliability may be much more important on some systems, while 
security might be paramount in military systems storing classified data. QUASAR archi-
tecture cases can be developed for any quality factor or quality subfactor. 

Ramifications: The assessors and architects have the flexibility to select, develop, and assess 
quality cases only for those quality factors and subfactors for which quality cases are justified 
in terms of cost and risk. 

Using QUASAR architecture cases to address only those quality factors associated with the 
highest risk or system cost has the positive impact of significantly lowering project risk and 
potentially lowering system development cost and maintaining the schedule. 

3.3.3 Use for Demonstration (Certification) vs. Assessment  
Differences: Safety cases and QUASAR architecture cases exhibit the following differences 
in terms of demonstration versus assessment: 

• Safety cases have historically been used during safety certification to demonstrate that a 
system is sufficiently safe to use. Safety cases have often been used to demonstrate the 
safety of public transportation systems (e.g., airplanes, trains, and APMs) to ensure pub-
lic safety. 

• QUASAR architecture cases are primarily used to assess the quality of system architec-
tures, not to demonstrate the quality of the system. 

Ramifications: Because safety certification is contractually or legally mandated, it justifies a 
very heavy investment in expense in both time and money to officially demonstrate. Whereas 
safety certification demands a demonstration (i.e., proof) of safety, architecture assessment 
typically only requires a preponderance of evidence to pass. Architecture quality cases will 
typically be significantly smaller than safety cases. 
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Using QUASAR architecture cases for assessment rather than demonstration and certification 
has the positive impact of significantly lowering their cost, both in terms of effort and sched-
ule. 

3.3.4 System Quality Cases vs. QUASAR Architecture Cases  
Differences: System quality cases and QUASAR architecture cases exhibit the following 
differences in terms of system versus architecture cases: 

• System quality cases present the developers’ claims, arguments, and evidence that the 
system has sufficient quality.  

• QUASAR architecture cases present the architects’ claims, arguments, and evidence that 
the architecture adequately supports the quality of the system or subsystem. 

Ramifications: Because architecture quality cases are restricted to architecture claims, archi-
tecture arguments, and architecture evidence, they do not contain design, implementation, 
integration, or test information. Architecture quality cases also only address requirements to 
the extent to which the architecture must meet architecturally significant requirements. Com-
pared to system quality cases, architecture quality cases will therefore be significantly smaller 
and significantly less costly in terms of both effort and schedule. 

Using QUASAR architecture cases rather than system quality cases has the positive impact of 
significantly lowering their cost, both in terms of effort and schedule. 

3.3.5 During Development vs. End of Development 
Differences: Safety cases and QUASAR architecture cases exhibit the following differences 
in terms of timing: 

• Safety cases – Because safety is a system property, it can be demonstrated and certified 
only at the end of system development. To demonstrate that a system is safe, one must 
demonstrate proper requirements, architecture, design, implementation, integration, and 
test because a failure in any of these disciplines can result in an unsafe system. Although 
safety cases can and should be started early during development, this is why they are 
completed only at the end of system development.     

• QUASAR architecture cases – The architecture of the system is developed in an incre-
mental, iterative, and parallel manner as the system’s subsystems are identified and de-
veloped. Because the architecture drives the design, implementation, integration, and in-
tegration testing, the architecture of the individual subsystems is developed relatively 
early during development. 

Ramifications: Architecture cases are produced and reviewed relatively early during the de-
velopment cycle as the architecture is developed. Architecture cases are also developed and 
reviewed in an incremental, iterative, and parallel manner as the architectures of the system’s 
subsystems are produced. 
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Using QUASAR architecture cases early in the development cycle has a positive impact of 
supporting the assessment of the architecture earlier during development than when using 
complete quality cases, which must be used at the end of development because they address 
design, implementation, integration, and testing as well as requirements and architecture. 
This enables problems to be identified and corrected earlier, when they are less expensive and 
more likely to be properly addressed. 
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4 QUASAR Teams 

The following teams collaborate to prepare for and perform the architecture assessments: 

1. Assessment Team 

One or more assessment teams 
a. collaborate with the architecture team to set the scope of the assessments 
b. independently assess the quality of the system or subsystem architecture produced 

by the associated architecture team 

2. Architecture Team 

The architecture teams at the different tiers in the system hierarchy 
a. collaborate with the assessment team to set the scope of the assessments 
b. make their quality cases to the assessment teams consisting of 

− claims that their architecture fulfills its associated architecturally significant re-
quirements 

− clear and compelling arguments supporting their claims (e.g., describe the asso-
ciated architectural decisions they have made and the rationales for these deci-
sions) 

− adequate official evidence (e.g., architectural diagrams, models, and documents) 
backing up their arguments 

3. Requirements Team 

The requirements teams at the different tiers in the system hierarchy 
a. engineer the architecturally significant quality requirements 
b. collaborate with the assessment team and architecture team to set the scope of the 

assessments 

Note that the number of teams and their membership varies from program to program de-
pending on many factors such as the size and complexity of the system and the [contractual] 
relationships between the assessment teams and the architecture teams. Although it is typi-
cally important for assessment teams to remain independent from architecture teams to en-
sure that the assessment of the architecture is objective, in practice, a person can be a member 
of multiple teams. Thus, the same person may be a member of multiple assessment teams, of 
multiple architecture teams, or of both the requirements team and architecture team. 
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Figure 10: Teams and Their Interactions 

4.1 Assessment Team 
The following definition, responsibilities, membership, and work products apply to the as-
sessment team. On large programs, multiple assessment teams may perform assessments in 
parallel. 

• Definition 

The assessment team independently26 assesses the quality of the architectures of a sys-
tem and its subsystems. This team assesses the degree to which architectures support the 
derived requirements that have been allocated to the subsystems and that have driven the 
development of the architectures. 

                                                 
26 To obtain an objective assessment, it is important that the assessment team is independent of the 

architecture teams (e.g., in terms of staffing and reporting). 
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• Responsibilities 

The members of the assessment team typically share the following responsibilities: 

− Include subject matter experts. 
If appropriate, the assessment team should identify and invite special subject matter 
experts to join them. These experts in the application domain or a relevant specialty 
engineering field can understand specialized architectural information, the architects’ 
decisions, and their associated rationales. 

− Determine assessment scope. 
The assessment team works with the architecture teams to set the scope of the as-
sessments in terms of the architectural elements assessed and the relevant quality fac-
tors. 

− Collaborate. 
The assessment team collaborates with the subsystem requirements and subsystem 
architecture teams to schedule the meetings. 

− Properly conduct preparations. 
Members of the assessment team prepare for meetings by reading preparatory infor-
mation supplied by the requirements and architecture teams. 

− Assess understanding. 
Members of the assessment team evaluate the architects’ understanding of the quality 
requirements that drive their architectures. 

− Assess quality cases. 
Members of the assessment team evaluate the architects’ claims, arguments, and evi-
dence concerning their architectures’ support for derived and allocated quality re-
quirements. 

− Ask questions. 
Members of the assessment team ask probing questions concerning the quality re-
quirements and the architecture. Note that is important that members of the assess-
ment team have strong backgrounds, be persistent in eliciting satisfactory answers 
from the system and subsystem architects, and not be easily intimidated by such sen-
ior members of the development staff. 

− Publish results. 
Assigned members of the assessment team prepare and distribute the meeting min-
utes and reports. 

− Update method. 
Assigned members of the assessment team update the assessment method as appro-
priate based on lessons learned during the assessments.  

• Membership 
The members of the assessment team typically include people filling one or more of the 
following roles: 

− Assessors 
Assessors are responsible for technically assessing the architectural information pro-
vided and presented by the architecture team to determine if the architecture suffi-
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ciently supports its allocated and derived quality requirements. This role can include 
customer representatives and consultants who are also architects. The assessment 
team should retain a consistent core set of assessors who take part in all (or almost 
all) subsystem assessments.  

− Assessment Team Leader 
The assessment team leader is an assessor who leads the assessment team. This role 
often includes the responsibility of performing final negotiations with the architec-
ture teams regarding issues for which consensus is difficult to obtain. 

− Meeting Facilitator 
The meeting facilitator is an assessor who facilitates during meetings, ensuring that 
the meeting discussions stay on track and that the meeting stays on schedule. 

− Subsystem Liaison  
The subsystem liaison is the member of the customer (acquisition) organization who 
oversees the development of a subsystem. The subsystem liaison typically works 
closely with the subsystem development team (and therefore the subsystem architec-
ture team) and should therefore be well versed in the subsystem architecture and its 
status. Note that the subsystem liaison is typically not a core member of the assess-
ment team unless only a small number of subsystems are being assessed and the core 
team contains all subsystem liaisons.  

− Subject Matter Experts (SMEs) 
Subject matter experts are assessors who are also specialty engineering experts.27 
They are responsible for providing expertise in the 
− application domain of the subsystem being assessed (e.g., avionics specialists for 

avionics subsystems or communications engineers for communications subsys-
tems) 

− quality factor (e.g., reliability engineers, safety engineers, and security engineers) 
− Scribe 

The scribe is an assessor who captures general observations and action items such as 
requests for information or requests for action during the meeting. 

• Work Products 
− System Architecture Assessment Initiation Phase Work Products 

− Architecture Assessment Training Materials 
− Architecture Assessment Procedure 
− Initial Kickoff Meeting Agenda 
− Initial Kickoff Meeting Notes (developed by individual attendees) 
− Architecture Assessment Schedule 
− Architecture Assessment Action Item List 

                                                 
27 SMEs typically take part in the assessments on an as-needed basis. Thus, they are typically not a 

part of the set of core members of the assessment team. It should be decided early as to whether or 
not SMEs may vote on the subsystem assessment results (i.e., whether or not the subsystem archi-
tecture adequately supports a specific class of quality requirements and therefore what color it 
earns on the subsystem architecture support matrix). Refer to Section 6.3.6 for more information 
about the subsystem architecture support matrix and its contents. 
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− Initial Kickoff Meeting Minutes (built using individual attendee’s notes) 
− Subsystem Requirements Meeting Work Products 

− Subsystem Requirements Meeting Checklist 
− Subsystem Requirements Meeting Assessor Notes (individual assessor’s notes) 
− Subsystem Requirements Meeting Outbrief 
− Subsystem Requirements Meeting Minutes (built using individual assessor’s notes) 
− Updated Assessment Action Item List 

− Subsystem Architecture Assessment Meeting Work Products 
− Subsystem Architecture Assessment Checklist 
− Subsystem Architecture Assessment Meeting Assessor Notes (individual assessor’s 

notes) 
− Subsystem Architecture Support Matrix 
− Subsystem Architecture Assessment Meeting Outbrief 
− Subsystem Architecture Assessment Meeting Report (built using individual asses-

sor’s notes) 
− Updated Assessment Action Item List 

4.2 Architecture Teams 
Two types of architecture teams are involved in the architecture assessment method: the top-
level architecture team and multiple subsystem architecture teams. The same people may fill 
roles on both types of architecture teams, especially on smaller projects. On large projects, 
multiple subsystem architecture teams will probably participate in parallel assessments. 

The following definition, responsibilities, membership, and work products apply to the archi-
tecture teams.  

4.2.1 Top-Level Architecture Team 
• Definition 

The top-level architecture team is the team that produces the top-level architecture being 
assessed. 

• Responsibilities 
− Lead the lower level (subsystem) architecture teams. 
− Understand the assessment procedure and share this knowledge with the subsystem 

architecture teams. 
− Attend the initial kickoff meeting. 
− Collaborate with the assessment team and top-level requirements team to 

− Tailor the architecture assessment method. 
− Set the scope of the architecture assessments in terms of subsystems, relevant 

types of architecturally significant requirements (e.g., quality requirements), and 
level of resources (e.g., time and money) to be invested in the assessments. 

− Develop an initial schedule for assessments. 
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− Work with the subsystem architecture teams to ensure that they understand the sys-
tem architecture assessment method and their responsibilities with regard to its appli-
cation. 

• Membership 
− lead system architect 
− subsystem architects 

• Work Products 
− Initial Kickoff Meeting Work Products 

− recommended tailoring of the architecture assessment method 
− recommendations regarding the scope of the architecture assessments 
− recommendations regarding the scheduling of assessment meetings 

− Subsystem Requirements Meeting Work Products 
− none 

− Subsystem Architecture Assessment Meeting Work Products 
− none 

4.2.2 Subsystem Architecture Teams 
• Definition 

Subsystem architecture teams are the teams that produce the individual subsystem archi-
tectures being assessed. 

• Responsibilities 
− Prepare and provide preparatory materials for the meetings to the assessment team 

sufficiently early for the assessment team to properly review them. 
− Prepare and present meeting presentation materials to the assessment team to con-

vince them that the subsystem adequately supports its allocated and derived quality 
requirements. This includes quality cases consisting of 
− claims that their architecture provides sufficiently support for the derived archi-

tecturally significant requirements that have been allocated to their subsystem 
− clear and compelling arguments supporting these claims 
− sufficient evidence backing up the arguments  

− Answer evaluators’ questions regarding their architectural decisions. 
− Review subsystem meeting outbriefs, minutes, and reports for factual errors (e.g., in-

correct observations and missing evidence). 

• Membership 
− subsystem architects 
− lead architect (if appropriate during the meetings) 
− sub-subsystem architect(s) 
− specialty engineering team representatives (for quality factors treated as specialty en-

gineering, such as reliability, safety, and security)  
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• Work Products 
− Initial Kickoff Meeting Work Products 

− none 
− Subsystem Requirements Meeting Work Products 

− Subsystem Requirements Review Preparatory Materials (architecture-related in-
formation) 

− Subsystem Requirements Review Presentation Materials (architecture-related in-
formation) 

− Subsystem Requirements Review Meeting Agenda (architecture-related informa-
tion) 

− Subsystem Architecture Assessment Meeting Work Products 
− Subsystem Architecture Preparatory Materials 
− Subsystem Architecture Meeting Agenda 
− Subsystem Architecture Presentation Materials 

4.3 Requirements Teams 
Two types of requirements teams are involved in the architecture assessment method: the top-
level requirements team and multiple subsystem requirements teams. The same people may 
fill roles on both types of requirements teams, especially on smaller projects. On large pro-
jects, multiple subsystem requirements teams will probably participate in parallel assess-
ments. 

The following definition, responsibilities, membership, and work products apply to the re-
quirements teams.  

4.3.1 Top-Level Requirements Team 
• Definition 

The top-level requirements team is the team that engineers (e.g., identifies, analyzes, 
specifies, and manages) the system requirements of the system architecture being as-
sessed. 

• Responsibilities 
− Engineer system goals and requirements. 

− Engineer system functional, data, and interface requirements and appropriate con-
straints. 

− Engineer system quality requirements.28  
− Ensure that all requirements (especially the architecturally significant requirements) 

are cohesive, complete, consistent, correct, current, externally observable, feasible, 

                                                 
28  In practice, many system-level requirements engineers are primarily trained in methods (e.g., use 

case modeling) for engineering functional requirements. Unfortunately, many do not know how to 
engineer quality requirements that are feasible, unambiguous, and verifiable. 
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mandatory, relevant, stakeholder-oriented, and unambiguous, can be validated and 
verified. 

− Lead the lower level (subsystem) requirements teams. 
− Understand the assessment procedure and share this knowledge with the subsystem 

requirements teams. 
− Attend the initial kickoff meeting. 
 
− Collaborate with the assessment team and top-level architecture team to 

− Tailor the architecture assessment method. 
− Set the scope of the relevant types of architecturally significant requirements (e.g., 

quality requirements), and level of resources (e.g., time and money) to be invested 
in the assessments. 

− Develop an initial schedule for assessments. 
− Work with the subsystem requirements teams to ensure that they understand the sys-

tem architecture assessment method and their responsibilities with regard to its appli-
cation. 

• Membership 
− requirements team leader 
− requirements engineers 
− specialty engineering team representatives (for quality factors treated as specialty en-

gineering, such as reliability, safety, and security)  

• Work Products 
− System Architecture Assessment Initiation Meeting Work Products: 

− Initial Kickoff Meeting Notes 

4.3.2 Subsystem Requirements Teams 
• Definition 

The subsystem requirements teams are teams that engineer (e.g., identify, analyze, spec-
ify, and manage) the derived requirements that have been allocated to the individual sub-
system architectures being assessed 

• Responsibilities 
− Engineer derived goals and requirements. 

− Engineer subsystem functional, data, and interface requirements and appropriate 
constraints. 

− Engineer quality requirements.29  
− Derive subsystem goals and requirements. 

                                                 
29  In practice, subsystem requirements engineers are like system requirements engineers in that they 

are primarily trained in methods (e.g., use case modeling) for engineering functional requirements. 
Unfortunately, many do not know how to engineer quality requirements that are feasible, unambi-
guous, and verifiable. 
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− Ensure that all requirements (especially the architecturally significant requirements) 
are cohesive, complete, consistent, correct, current, externally observable, feasible, 
mandatory, relevant, stakeholder oriented, unambiguous, and can be validated and 
verified. 

− Collaborate with the subsystem architecture team to ensure that all architecturally 
significant requirements are properly 
− derived 
− identified (e.g., tagged) as such 
− specified in sufficient detail to provide adequate guidance 

• Membership 
− requirements team leader 
− requirements engineer 
− specialty engineering team representatives (for quality factors treated as specialty en-

gineering, such as reliability, safety, and security)  

• Work Products 
− System Architecture Assessment Initiation Meeting Work Products: 

− none 
− Subsystem Requirements Meeting Work Products: 

− Subsystem Requirements Meeting Preparatory Materials 
− Subsystem Requirements Meeting Presentation Materials 
− Subsystem Requirements Trace 

− Subsystem Architecture Assessment Meeting Work Products 
− none 
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5 QUASAR Phases and Tasks 

As illustrated in Figure 11, the QUASAR method is decomposed into the following phases: 

1. System Architecture Assessment Initiation Phase 
This preparatory phase occurs once at the beginning of the overall system assessment.  

 Subsystem Phases 
a. Subsystem Requirements Review Phase 
 This phase is repeated for each subsystem for which the architecture is being as-

sessed. It ensures that the associated quality requirements are properly allocated 
and specified. It also ensures that the architecture team is ready to develop their 
quality cases. 

b. Subsystem Architecture Assessment Phase 
 This phase is repeated for each subsystem for which the architecture is being as-

sessed. During this phase, the subsystem architecture team presents their quality 
cases to the assessment team. 

2. System Architecture Assessment Summary Phase 
This phase typically occurs once at the end of the overall assessment. During this final 
phase, the results of the subsystem architecture quality assessments are summarized and 
presented to their stakeholders. 

System Architecture 
Assessment Initiation

Subsystem 
Requirements

Review

Subsystem
Architecture
Assessment

System Architecture
Assessment Summary

repeat for each subsystem being assessed

done

no

yes

 

Figure 11: QUASAR Phases 
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As illustrated in Figure 12, each of these phases is decomposed into three subtasks: pre-
meeting preparation, the associated meeting, and post-meeting follow-through. The figure 
does not show any iteration that might be necessary.30

1. System Architecture Assessment Initiation Phase 
a. Task: System Architecture Assessment Initiation – Preparation 
 The assessment team and overall architecture team prepare by exchanging and 

reading relevant pre-meeting documentation. 
b. Task: System Architecture Assessment Initiation – Meeting 
 The assessment team and overall architecture team hold an initial kickoff meeting 

during which they agree on the scope and method for the architecture assessments. 
c. Task: System Architecture Assessment Initiation – Follow-Through 
 The assessment team reports their findings and recommendations to the overall ar-

chitecture team and other stakeholders. 
 
Subsystem Assessments 
For each subsystem being assessed on a subsystem by subsystem basis perform the 
following tasks: 
a. Subsystem Requirements Review Phase 
− Task: Subsystem Requirements Review – Preparation 

The assessment team and subsystem architecture team prepare by exchanging 
and reading relevant pre-meeting documentation. 

− Task: Subsystem Requirements Review – Meeting 
The subsystem architecture team demonstrates to the assessment team their 
knowledge of the architecturally significant requirements and their understand-
ing of what is expected of them during the coming assessment. 

− Task: Subsystem Requirements Review – Follow-Through 
The assessment team reports their findings and recommendations to the sub-
system architecture team and other stakeholders. 

b. Subsystem Architecture Assessment Phase 
− Task: Subsystem Architecture Assessment – Preparation 

The assessment team prepares by exchanging and reading relevant pre-meeting 
documentation provided by the subsystem architecture team. 

− Task: Subsystem Architecture Assessment – Meeting 
The subsystem architecture team presents to the assessment team their cases 
that the architecture adequately supports its architecturally significant re-
quirements. 

− Task: Subsystem Architecture Assessment – Follow-Through 
The assessment team reports their findings and recommendations to the sub-
system architecture team and other stakeholders. 

 

                                                 
30 The two major reasons for repeating the requirements reviews and architecture assessments are (1) 

if the subsystems were not ready or (2) if the reviews and assessments did not (completely) pass 
the first time. 
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2. System Architecture Assessment Summary Phase 
a. Task: System Architecture Assessment Summary – Preparation 
 The assessment team prepares by rolling up the results of the individual subsystem 

assessments into an overall system architecture assessment. 
b. Task: System Architecture Assessment Summary – Meeting 
 The assessment team reports the overall system architecture assessment results to 

the system architecture team and other stakeholders. 
c. Task: System Architecture Assessment Summary – Follow-Through 
 The assessment team captures lessons learned and updates the architecture assess-

ment method. 

The subsections in this section discuss these phases in more detail. 
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Figure 12: QUASAR Phases and Tasks 

5.1 System Architecture Assessment Initiation 
Phase 

A system architecture assessment initiation phase occurs at the beginning of the QUASAR 
architecture assessment method.  

CMU/SEI-2006-HB-001 59 



 

Phase Objective 
The objective of this phase is to properly prepare both the assessment and architecture teams 
to assess the subsystem architectures. 

Phase Tasks 
As illustrated in , this assessment initiation phase consists of the following three 
tasks, which are performed sequentially: 

Figure 12

1. System Architecture Assessment Initiation – Preparation 

2. System Architecture Assessment Initiation – Initial Kickoff Meeting 

3. System Architecture Assessment Initiation – Follow-Through 
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Figure 13: System Architecture Assessment Initiation Phase 

As illustrated in Figure 13, three tasks of the system architecture assessment initiation phase 
involve the assessment team and the top-level architecture team producing or using following 
work products: 

1. Architecture Assessment Procedure 
2. Architecture Assessment Training Materials 
3. Initial Kickoff Meeting Agenda 
4. Initial Kickoff Meeting Notes 
5. Initial Kickoff Meeting Minutes 
6. Assessment Schedule 
7. Assessment Action Item List 
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5.1.1 System Architecture Assessment Initiation – 
Preparation 

Preparation Task Objective 
The objective of this task is to ensure that the system architecture team and the assessment 
team are properly prepared for the assessment kickoff meeting. 

Preparation Task Duration 
The duration of this task largely depends on the availability of the members of the system 
architecture team and the members of the assessment team; it may vary anywhere from a few 
days to a few weeks.  

Preparation Task Preconditions 
This task can be started when the decision to perform a system architecture quality assess-
ment has been made. 

Preparation Task Steps 
Prior to the initial kickoff meeting, perform the following steps:31

1. Staff assessment team. 

Step: The management of the assessment organization ensures that the assessment team 
is properly staffed with its initial members.32

Rationale: As documented in Section 4.1, the assessment team needs to be staffed with 
an assessment team leader, a meeting facilitator, assessors, subject matter experts, and a 
scribe. Although all team members may not be available at the beginning of the process, 
and although subject matter experts will be members of the assessment team based on 
availability and relevance to the subsystem being assessed, a core group of permanent 
members should be assigned to the team at this time. 

2. Train assessment team. 

Step: A qualified and experienced member of the assessment team uses the architecture 
assessment training materials and architecture assessment procedure to train the other 
members of the assessment team in the proper use of the architecture assessment 
method. 

Rationale: The assessment team will be much more effective if they understand the 
method that they will use. 

                                                 
31 The amount of time prior to the meeting will vary depending on the circumstances of the assess-

ment. Care should be taken to enable just-in-time preparation, while ensuring adequate prepara-
tion time. 

32 The tasks, subtasks, and steps are numbered in this handbook for the sake of easy identification 
during discussions and negotiations between teams. Because an iterative, incremental, and parallel 
development cycle and corresponding assessment method is assumed, these tasks, subtasks, and 
steps may be performed in different orders and concurrently. 
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3. Identify top-level requirements and architecture teams. 

Step: The assessment team works with the management of the development organization 
to identify their top-level requirements team, their top-level architecture team, and the 
members of these two teams who will participate in the assessment. 

Rationale: 
− Depending on the timing of the system architecture assessment initiation meeting, the 

members of these two teams should know primary architecturally significant system 
requirements or at least the associated quality goals if proper requirements have not 
yet been specified. The system requirements team should have by this time elicited 
these architecturally significant requirements from the system’s various stakeholders. 
This knowledge will be necessary to set the scope of the overall system architecture 
quality assessment. 

− The top-level requirements team is typically responsible for engineering the require-
ments of either the overall system or the top-level subsystem, the architecture of 
which is being assessed. They are therefore responsible for engineering the architec-
turally significant system quality requirements. 

− Similarly, the top-level architecture team is typically responsible for developing the 
architecture of either the overall system or the top-level subsystem, the architecture of 
which is being assessed. They will also be responsible for ensuring the architectural 
integrity of the lower level subsystems. 

− Depending on the structure of the development organization, the members of these 
two teams may be difficult to identify. 

4. Train top-level architecture team. 

Step: Several weeks prior to the initial kickoff meeting, a qualified and experienced 
member of the assessment team uses the architecture assessment training materials and 
architecture assessment procedure to train the members of the top-level requirements 
and architecture teams in the proper use of the architecture assessment method. The 
members of the top-level requirements and architecture teams are expected to read the 
architecture assessment procedure. 

Rationale: 
− Training must typically be provided several weeks prior to the initial kickoff meeting 

because the top-level architecture team members need adequate time to read the as-
sessment procedure in addition to preparing for the assessment. 

− The members of the top-level architecture team need to understand what is expected, 
both of them and of the members of the lower level subsystem requirements and ar-
chitecture teams, to ensure that the assessment method meets the needs of the re-
quirements and architecture teams as well as the needs of the assessment team. 

5. Organize the meeting.  

Step: At least two weeks prior to the initiation meeting, the assessment, system require-
ments, and system architecture teams collaborate to 
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a. Identify meeting attendees and other stakeholders. 
 Substep: The assessment, system requirements, and system architecture teams col-

laborate to develop a list of meeting attendees and other stakeholders. 
Rationale: It is important to ensure that no significant stakeholder is overlooked. 

b. Set time and location. 
 Substep: The assessment, system requirements, and system architecture teams col-

laborate to set an exact time and location (e.g., address, building number, and room 
number) for the system architecture assessment initiation meeting. 
Rationale: Attendees need an exact time to avoid schedule conflicts. 

c. Develop meeting agenda. 
 Substep: The assessment, system requirements, and system architecture teams col-

laborate to produce a meeting agenda covering setting the assessment scope and 
schedule, tailoring the assessment method, and meeting wrap-up (e.g., assignment 
of action items). 
Rationale: Agendas enable attendees to identify the parts of the meeting that are 
most important to them. 

d. Invite stakeholders. 
 Substep: The assessment team sends an invitation including the meeting agenda to 

the identified meeting attendees and other stakeholders. 
Rationale: Documented invitations (e.g., email with attached agenda) are conven-
ient for invitees who can add the meeting to their schedules and read the agendas. 

Rationale: It is important to set a mutually agreed upon time and location for the initial 
meeting, especially because members of all three teams tend to be very busy. The loca-
tion should either be colocated with the architects (which will help minimize disruptions 
for them) or be off-site so that requirements and architecture teams are less likely to be 
distracted or called away. 

Preparation Task Postconditions 
This task is successfully completed when the following postconditions are met: 

• The assessment team has been properly staffed and trained in the assessment method. 

• The top-level requirements and architecture teams have been identified and trained in 
the assessment method. 

• The system architecture assessment initiation meeting has been organized. 

5.1.2 System Architecture Assessment Initiation – Meeting 
Meeting Task Objectives 
The system architecture assessment phase meeting has the following major objectives: 

1. Determine assessment scope. 

A primary objective of this meeting is to determine the scope of the overall assessment 
including the types of architecturally significant (e.g., quality) requirements against 
which to assess the architectures of the system and its subsystems, the subsystems to be 
assessed, and the quantity of resources available to conduct the assessments: 
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− Architecturally Significant Requirements 
The importance of the different types and subtypes of architecturally significant re-
quirements can vary greatly depending on the system whose architecture is being as-
sessed. Typically, the architecturally significant requirements that are at highest risk 
for not being adequately supported by the architecture are the quality requirements. 
For example, performance is critical to real-time systems, interoperability is critical 
to systems that must communicate with many other systems, safety is obviously 
critical to safety-critical systems, and security can be critical to systems that must 
protect valuable assets from malicious attack.  

− Subsystems 
The size of the system also impacts how many subsystems can be assessed given the 
limitations on project resources. If the system is decomposed into multiple subsys-
tems, which are further decomposed into lower level subsystems, and so on, then the 
architecture is typically too large and complex to be assessed all at once. Often, mul-
tiple assessments are performed, one for each subsystem that is allocated important 
architecturally significant requirements. The subsystem architecture assessments are 
typically performed top-down by tier and horizontally within tiers based on the de-
velopment schedule. Eventually, the subsystem assessment results are rolled up to 
produce the overall system assessment results. 

− Assessment Resources 
The amount of time and effort available to perform the assessment also varies from 
system to system depending on the system’s importance, schedule, and the availabil-
ity of assessment and architecture team members.  

2. Draft assessment schedule. 

A second objective of the initiation meeting is to generate a general assessment schedule 
that enables the assessment team, the subsystem requirements team, and the architecture 
team to prepare for the subsystem assessments: 

− Schedule Sufficiency 
The schedule of the requirements review meetings must allow the subsystem re-
quirements teams to derive and the subsystem architecture teams to allocate the ar-
chitecturally significant requirements to the subsystems being assessed. 

− Sufficient Yet Flexible Architecture 
The schedule of the assessment meetings must allow the subsystem architecture 
teams sufficient time to create subsystem architectures that are sufficiently mature 
yet early enough to allow the architectures to be improved based on the results (i.e., 
the architectures cannot have been frozen and already used as the basis for significant 
design, implementation, and testing).33 

                                                 
33 The need for the subsystem architecture that is being assessed to be sufficiently complete to sup-

port a meaningful assessment and yet flexible enough to be improved as a result of the assessment, 
can be difficult to achieve if an agile method is being used that promotes minimal, incremental, 
just-in-time architecture development as part of short duration iterations. In such methods where 
subsystem architecture, design, implementation, and test happen concurrently, any architectural 
problems identified may require abandonment of the associated design, implementation, and test. 
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− Prior to Major Reviews 
The subsystem architecture assessments are often scheduled prior to appropriate ma-
jor project milestone reviews so that the results of the architectural assessments can 
be reported during the reviews. 

− Competing Schedule Pressure 
Subsystem requirements reviews and subsystem architecture assessments compete 
with many other activities and tasks for limited resources. Specifically, assessors, re-
quirements engineers, and architects are key personnel with very heavy schedules, 
making it difficult to develop assessment schedules when all stakeholders are avail-
able to prepare and take part. 

3. Tailor architecture assessment method to be effective. 

Unfortunately, conflicting goals of the assessment team and the subsystem requirements 
and architecture teams may make it difficult to achieve consensus on how to tailor the 
QUASAR method. 

− Assessment Team 
The assessment team naturally wants to ensure an effective assessment and minimize 
the effort required to prepare for and perform the assessments. For example, they 
want an assessment method that provides them with highly relevant documentation 
organized by the type of architecturally significant requirement (e.g., quality factor). 
In contrast, the architecture team might feel it’s sufficient to supply existing docu-
mentation, regardless of its organization or appropriateness as evidence. 

− Subsystem Requirements Teams 
The subsystem requirements engineers naturally want to limit the impact of the re-
quirements reviews on their requirements, many of which may already be frozen. 
They may not want to follow an assessment method that would generate significant, 
new, and verifiable quality requirements when they have concentrated heavily on 
functional requirements (e.g., by emphasizing use case modeling) and specified 
vague quality goals, rather than unambiguous quality requirements.  

− Subsystem Architecture Teams 
The subsystem architects naturally want to limit the impact of the assessments on 
their effort because they are typically in the midst of developing and ensuring the in-
tegrity of their architectures. They may also not want to use an assessment method 
that causes them to develop significant new evidence for the assessments if they did 
not generate appropriate documentation during the normal course of developing their 
architectures.  

Meeting Task Duration 
The initial kickoff meeting can typically be completed in one day. However, the duration of 
the kickoff meeting depends on the ability of the assessment team and top-level architecture 
team to effectively collaborate to quickly achieve consensus on the scope of the architecture 

                                                                                                                                           
Fortunately, there is a growing recognition of the need for a complete and stable architecture prior 
to the agile development of the associated design, implementation, and test work products. 
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assessments in terms of the types of architecturally significant requirements that will form the 
basis of the assessments, the subsystems to assess, the assessment schedule, and the details of 
how to tailor the assessment method. 

Meeting Task Preconditions 
This task can be started when the following preconditions are met: 

• The assessment team has been properly staffed and trained in the assessment method. 

• The top-level requirements and architecture teams have been identified and trained in 
the assessment method. 

• The system architecture assessment initiation meeting has been organized. 

Meeting Task Steps 
During the initial kickoff meeting, complete the following steps: 

1. Set scope. 

Step: The assessment team and the top-level requirements and architecture teams col-
laborate to build a consensus on the scope of the assessments.34

Rationale: 
− It is critical to get an up-front consensus among the major stakeholders on the scope 

of the overall assessment. 
− There should be (but often is not) a general agreement among the three teams as to 

what are the most important quality factors against which to assess the system archi-
tecture. However, depending on the application domain, size, and complexity of the 
system, quality factors that are important for some subsystems may not be important 
for others. It is therefore important to remember that this is merely an initial list, 
which may be later modified to meet the assessment needs of individual subsystem 
architectures. 

a. Subsystems 
 Substep: Take a risk-based approach to identify the subsystems, the architectures of 

which are to be assessed.  
Rationale: Sufficient resources are probably not available to assess all subsystems. 
Limited assessment resources should be invested in assessing the architectures of 
− mission- or safety-critical subsystems 
− complex and/or large subsystems 
− subsystems using previously untested architectures or technologies 
− subsystems that are similar to subsystems that have previously had problems due 

to poor architectures 

                                                 
34 Note that this implies that the assessment team has the knowledge and authority to speak for the 

acquisition organization and that the top-level requirements and architecture teams have the 
knowledge and authority to “speak” for the development organization with regard to establishing 
the scope of the assessments. 
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− subsystems whose architectures are being produced by relatively inexperienced 
architects 

− subsystems that need to be certified (e.g., safety certifications, security certifica-
tions); the assessment ensures that arguments and evidence that will help con-
vince the certifiers are developed 

b. Quality Factors 
 Substep: Based on the subsystems selected to be assessed, create an initial priori-

tized list of the important types of architecturally significant quality requirements 
against which the subsystems will be assessed.35 
Rationale: Not all quality factors are relevant and the relevant quality factors are 
not equally important. There is typically not sufficient time to assess the subsystem 
architecture’s support for all relevant quality factors, so resources must be invested 
in assessing those quality factors having the highest associated risk and largest 
benefit. 

c. Resources 
 Substep: Set the resources per method task in terms of personnel and schedule (e.g., 

number of days to allocate to preparation, meeting, and follow-through). 
Rationale: Limited resources must be applied wisely. 

2. Develop schedule. 

Step: The assessment team and the top-level requirements and architecture teams col-
laborate to develop an initial version of architecture assessment schedule. Although this 
schedule should be relatively precise for the dates of the requirements reviews and archi-
tecture assessments for those subsystems to be assessed first, the schedule may be fairly 
vague about the dates of later reviews and assessments. 

Rationale: A rough overall schedule is needed early to ensure that resources can be 
available when needed and that the assessment tasks do not conflict with other important 
project tasks. 

3. Tailor assessment method. 

Step: If necessary, the assessment team and the top-level requirements and architecture 
teams collaborate36 to tailor the QUASAR method to better meet the specific needs of 
the system or subsystem being assessed. Tailoring typically involves modifying the 
method’s 

 

                                                 
35 Note that would be very difficult without the top-level requirements team, which should be elicit-

ing this kind of information from the system’s stakeholders, and the top-level architecture team, 
which should be able to help prioritize the resulting quality factors in terms of how they will im-
pact the system architecture. 

36 To enable the method to meet the specific characteristics of individual subsystem architectures, 
further tailoring may also need to be made on an individual subsystem-by-subsystem basis. How-
ever, care must be taken to avoid unnecessary subsystem-level tailoring in order to ensure an ade-
quate assessment of each selected subsystem’s architecture and to enable the assessment team to 
obtain consistent and comparable assessment results. 
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− Tasks 
The tasks performed during the different phases of the assessment can be tailored. 
New tasks can be added, existing tasks can be deleted, and steps composing the tasks 
can be added, deleted, or modified. Task durations can also be modified to fit the 
schedule and resource availability. 

− Teams 
The teams performing these tasks can be tailored by adding new teams, combining 
existing teams, deleting teams deemed unnecessary or unavailable, and modifying 
existing teams’ responsibilities or membership.  

− Work Products 
The work products produced during these tasks and steps can be added, modified, or 
deleted. Typical tailoring includes modifying the stakeholders for the assessments or 
contents of documents.  

Rationale: It is important that the assessment team and both the top-level requirements 
and architecture teams agree on the architecture assessment method so that it benefits all 
three teams. The method may need to be tailored to meet the specific needs of the pro-
ject or subsystem being assessed in order to be 
− effective in terms of developing a correct assessment  
− efficient in terms of effort required to perform the assessment 
− feasible in terms of necessary staffing availability, funding, and schedule. 

4. Manage action items. 

Step: The assessment team collaborates with the top-level requirements and architecture 
teams to collect, identify, and record any action items from the meeting. This includes 
setting due dates and assigning action items to appropriate people. Examples of common 
action items include the following: 
− obtain any delayed input on assessment scope (e.g., availability of resources and in-

clusion of subsystems and related types of quality requirements) 
− approve pending subsystem assessment schedules 
− gather final input on assessment method tailoring from development organization 

process engineering team 
Rationale: Unless action items are assigned and due dates are scheduled, the action 
items are unlikely to be properly handled in a timely manner and tracked to completion. 

Meeting Task Postconditions 
This task is successfully completed when the following postconditions are met: 

• The assessment scope has been determined. 

• The initial assessment schedule has been set. 

• The system architecture quality assessment has been tailored and agreed upon by the 
attendees. 
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5.1.3 System Architecture Assessment Initiation – 
Follow-Through 

Follow-Through Task Objectives 
The follow-through task of the system architecture assessment initiation phase has the fol-
lowing major objectives: 

• Report meeting results. The results of the initial kickoff meeting are reported to stake-
holders. 

• Ensure adequate support. By distributing the schedule and clarifying the responsibilities 
and tasks of the various teams involved, the follow-through task helps to ensure that the 
requirements reviews and architecture assessments are officially scheduled and re-
sources. 

• Track action items. Action items identified during the system architecture assessment 
initiation meeting are tracked to closure. 

Follow-Through Task Duration 
The duration of this task largely depends on the availability of the members of the assessment 
and top-level architecture teams and can last anywhere from a few days to two weeks. Natu-
rally, completing this task should be a high priority so that the outputs can be distributed 
while they remain fresh in everyone’s minds. 

Meeting Task Preconditions 
This task can be started when the following preconditions are met: 

• The assessment scope has been determined. 

• The initial assessment schedule has been set. 

• The system architecture quality assessment has been tailored and agreed upon by the 
stakeholders. 

Follow-Through Task Steps 
After the initial assessment kickoff meeting but prior to the first assessment, the following 
steps are performed in a timely manner: 

1. Produce, review, and present system architecture assessment initiation meeting out-
brief. 

Step: Within a day or two of the initiation meeting and usually before leaving the site of 
the meeting, complete the following steps: 
a. The members of the assessment team (especially the scribe) provide the leader of 

the assessment team with the team members’ meeting notes. 
b. The leader of the assessment team produces an initial version of the initiation meet-

ing outbrief. 
c. The assessment team members review the outbrief to ensure that it correctly sum-

marizes the results of the initiation meeting.  
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d. The leader of the assessment team iterates the outbrief to incorporate the comments 
and recommendations of the assessment team members. 

e. The leader of the assessment team presents the outbrief to the attendees and avail-
able stakeholders of the initiation meeting. 

Rationale: It is important to provide an informal outbrief at the end of the system archi-
tecture assessment initiation meeting so that attendees and stakeholders do not wait sev-
eral weeks to obtain a clear overview of the results of the meeting. 

2. Produce, review, and distribute system architecture assessment initiation meeting 
minutes. 

Step: Within a couple of weeks of the system architecture assessment initiation meeting, 
complete the following steps: 
a. Members of the assessment team provide their notes to the members of the team 

tasked to produce the initiation meeting minutes.37 
b. The members of the assessment team so tasked produce an initial version of the 

meeting minutes. 
c. The assessment team members review the meeting minutes to ensure that they cor-

rectly record the results of the initiation meeting.  
d. The assessment team leader iterates the meeting minutes to incorporate the com-

ments and recommendations of the assessment team members. 
e. The leader of the assessment team leader distributes the meeting minutes to stake-

holders, especially the meeting attendees.  

Rationale: The consensus concerning the scope of the assessment developed during the 
meeting needs to be officially documented to minimize the chance of confusion or po-
tential future repudiation by any attendees. 

3. Tailor architecture assessment procedure. 

Step: Within a couple of weeks of the system architecture assessment initiation meeting, 
complete the following steps: 
a. Using the initial kickoff meeting notes and other sources, assigned members of the 

assessment team update the architecture assessment procedure and distribute the re-
sulting tailored version to members of the assessment team. 

b. Members of the assessment team respond with comments and recommended 
changes. 

c. After iterating the architecture assessment procedure, the assessment team distrib-
utes the updated version of the architecture assessment procedure to the top-level 
requirements and architecture teams, which forward the procedure to the other de-
velopment stakeholders such as the leads (or members) of the subsystem require-
ments and architecture teams. 

                                                 
37  A subset of the assessment team may be tasked to produce the entire requirement review meeting 

minutes. On the other hand, the assessment team may be divided into pairs that are tasked to pro-
duce different subsections of the meeting minutes. The choice of approach may vary depending on 
the size and formality of the requirements review meeting minutes, which could contain a signifi-
cant number of observations and recommendations. In fact, depending on the importance given to 
the requirement review, a report may replace less formal meeting minutes. 
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d. The subsystem requirements and architecture teams respond with comments and 
recommendations to the top-level requirements and architecture teams. 

e. After organizing (and potentially passing judgment on) these comments and rec-
ommendations, the top-level requirements and architecture teams pass the approved 
and organized comments and recommendations back to the assessment team. 

f. The assessment team iterates the procedure. 
g. Upon approval by the leader of the assessment team, the project-specific system ar-

chitecture assessment procedure is distributed to all stakeholders. 

Rationale: Stakeholders (and especially participants) need to understand the method by 
which the architectures will be assessed. They also need to be able to submit recom-
mended modifications for project-specific tailoring. However, the assessment method ul-
timately belongs to the assessment team, which determines the official project-specific 
version of the method used. 

4. Distribute schedule. 

Step: The assessment team, the top-level requirements team, and top-level architecture 
team distribute the assessment schedule to all stakeholders including managers and the 
subsystem requirements and architecture teams. 

Rationale: Stakeholders need to know the tentative schedule for the various subsystem 
assessments so that they can plan other activities accordingly. Stakeholders also need to 
ensure that the subsystem architecture quality assessments are scheduled to support ma-
jor system reviews such as PDRs. 

5. Obtain needed resources. 

Step: Estimate the resources needed to perform the assessments, officially fund and 
schedule the initial assessments, and assign staff. 

Rationale: Without proper funding, scheduling, and staffing, necessary resources will 
not be available to perform the assessments, resulting in ineffectual assessments that 
may not be held in time to effectively influence the system and subsystem architectures. 

6. Track action items to completion. 

Step: The assessment team tracks open action items to completion. 

Rationale: Unless action items are assigned and due dates are scheduled, the action 
items are unlikely to be properly handled in a timely manner and tracked to completion. 

7. Capture lessons learned. 

Step: The assessment team collaborates with the system architecture team to capture les-
sons learned about the effectiveness of the system architecture assessment initiation 
phase of the QUASAR method. 

Rationale: This enables the method to be continually improved and tailored for future 
system architecture assessment initiation meetings and for future projects. 
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8. Update assessment method and associated training materials. 

Step: Based on the lessons learned, the project process team38 updates the project-
tailored QUASAR architecture assessment procedure and the associated QUASAR 
training materials. Where appropriate, they also provide the SEI with the lessons learned 
and updated procedure and training materials so that the official QUASAR documenta-
tion can be iterated. 

Rationale: Updating the QUASAR method will enable the process to be improved for 
future projects. 

5.2 Subsystem Requirements Review Phase 
Phase Objectives 
The objectives of this phase is to ensure that the 

• architecturally relevant quality goals and requirements are properly derived and allo-
cated to each subsystem for which the architecture is to be assessed 

• subsystem architecture team understands what is expected from them during the subsys-
tem architecture assessment phase 

Phase Duration 
Whereas the subsystem requirements review meeting may only last one or two days, prepara-
tions may begin up to one month before the meeting; follow-through may last a few weeks 
after the meeting.  

Phase Tasks 
During this phase, perform the following tasks for each subsystem (or other major element of 
the architecture) to be assessed: 

1. Subsystem Requirements Review – Preparation 

The assessment team and subsystem architecture team prepare by exchanging and read-
ing relevant preparatory documentation. 

2. Subsystem Requirements Review – Meeting 

The subsystem architecture team demonstrates to the assessment team their knowledge 
of the architecturally significant requirements and their understanding of what is ex-
pected of them during the coming assessment. 

3. Subsystem Requirements Review – Follow-Through 

The assessment team reports their findings and recommendations to the subsystem ar-
chitecture team and other stakeholders. 

                                                 
38 If an official “project process team” (e.g., system engineering process group [SEPG]) does not 

exist, then whichever team, group, or individual that is filling the process engineer role should 
perform this task. 
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Figure 14 illustrates the decomposition of Subsystem Requirements Review Phase into its 
three tasks, their associated work products, and the associated teams that produce, use, and 
update these work products. 

5.2.1 Subsystem Requirements Review – Preparation 
Preparation Task Objective 
The objective of this task is to ensure that the members of the assessment team, subsystem 
requirements team, and subsystem architecture team are properly prepared for the require-
ments review meeting. 

Preparation Task Duration 
The duration of this task largely depends on the availability of the members of the assessment 
team, subsystem requirements team, and subsystem architecture team. This task typically 
lasts up to one month. Although it takes time to produce and properly review the preparatory 
materials, members of the teams should strive for the shortest practical duration so as to 
maintain continuity and establish a proper sense of importance and urgency. 

Preparation Task Preconditions 
This task can be started when the quality requirements have been derived and allocated to a 
subsystem, the architecture of which is to be assessed. 

Preparation Task Steps 
Prior to the subsystem requirements meeting, perform the following steps: 

1. Train subsystem teams. 

Step: Up to approximately one month prior to the requirements meeting, provide the as-
sessment team members of the subsystem requirements and subsystem architecture 
teams with training in the tailored QUASAR system method so that they can properly 
prepare for the meeting. As part of this training, the assessment team provides each 
member of the subsystem requirements and subsystem architecture teams with a copy of 
the architecture assessment procedure, the architecture assessment training materials, 
and the subsystem requirements review. 

Rationale: The members of the subsystem requirements and subsystem architecture 
teams need to understand the method in which they will take part, especially their re-
sponsibilities including the steps they will perform and the work products they will need 
to produce. Members of these two teams need to find adequate time to learn the method. 
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Figure 14: Subsystem Requirements Review Phase 

2. Provide a requirements review checklist. 

Step: The assessment team supplies the subsystem requirements and subsystem architec-
ture teams with the requirement review checklist that the assessment team will use dur-
ing the requirements review meeting. 

Rationale: This will enable the subsystem requirements and subsystem architecture 
teams to better prepare for the coming assessment. 

3. Internally review quality goals and requirements. 

Step: Approximately one month prior to the requirements meeting, the subsystem archi-
tecture team collaborates with the subsystem requirements team to ensure that all archi-
tecturally significant quality goals and requirements are properly derived and allocated 
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(i.e., traced) to their subsystems. The teams ensure that the architecturally significant re-
quirements are prioritized and scheduled for implementation based on criteria such as: 
− criticality to users and the acquisition organization 
− architectural and implementation difficulty and risk 
− proper implementation order (For example, certain quality factors [e.g., security] 

need to be built into the system early because they would require major changes to 
the architecture if incorporated during later builds.) 

Rationale: It is critical for the subsystem architecture team to understand the architec-
turally significant goals and requirements that will drive their architectures. 

4. Develop and provide preparatory materials. 

Step: Approximately three weeks prior to the requirements meeting, the subsystem re-
quirements and subsystem architecture teams develop the subsystem requirements re-
view preparatory materials. The subsystem requirements team collects (e.g., either 
physically or via meta tags) and organizes these architecturally significant quality goals 
and requirements to produce their part of the preparatory materials. The subsystem ar-
chitecture team generates a partial, representative architecture quality case including 
claims, arguments, and evidence. Both teams provide the preparatory material to the as-
sessment team. The subsystem architecture team also provides the assessment team with 
read-only access to the relevant derived and allocated architecturally significant quality 
goals and requirements in its requirements repository. 

Rationale: By providing the assessment team with the subsystem requirements review 
preparatory materials at least three weeks prior to the review, the assessment team has 
sufficient time to familiarize themselves with the materials. This will make the assess-
ment team more effective and efficient at the actual review meeting, thereby enabling 
the meeting to be shorter in duration. In turn, this will enable the members of the subsys-
tem requirements and subsystem architecture teams to spend less time away from their 
primary work of engineering requirements and architecting the subsystem. 

5. Develop and provide presentation materials. 

Step: During the weeks immediately before the requirements meeting, the subsystem re-
quirements and subsystem architecture teams develop the presentation materials and 
provide them to the members of the assessment team.  

Rationale: The rationale for providing early access to the subsystem requirements re-
view presentation materials is similar to that for the preparatory materials. 

6. Become familiar with the subsystem. 

Step: The assessment team properly prepares for the requirements review meeting by 
reading the preparatory and presentation materials provided by the subsystem require-
ments and architecture teams. The assessment team familiarizes themselves with the 
subsystem and its architecturally significant quality goals and requirements. They as-
sessment team also familiarizes themselves with the architectural quality cases that the 
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subsystem architecture team intends to present during the subsystem architecture as-
sessment phase. 

Rationale: By familiarizing themselves with the subsystem, its relevant quality goals 
and requirements, and the maturity of the architecture team’s intended quality cases 
prior to the requirements meeting, the assessment team can be more efficient and effec-
tive during the meeting. 

7. Organize the meeting. 

Step: At least two weeks prior to the subsystem requirements review meeting, the as-
sessment team, subsystem requirements team, and subsystem architecture team collabo-
rate to complete the following tasks: 
a. Identify meeting attendees and other stakeholders. 

Substep: The assessment, subsystem requirements, and subsystem architecture 
teams collaborate to develop a list of meeting attendees and other stakeholders who 
should receive copies of the subsystem requirements review meeting preparatory 
and presentation materials. 
Rationale: It is important to ensure that no significant stakeholder is overlooked. 

b. Set time and location. 
Substep: The assessment, subsystem requirements, and subsystem architecture 
teams collaborate to set an exact time and location (e.g., address, building number, 
and room number) for the subsystem requirements review meeting. 
Rationale: Attendees need an exact time and place to avoid schedule conflicts and 
make necessary arrangements. 

c. Develop meeting agenda. 
Substep: The assessment, subsystem requirements, and subsystem architecture 
teams collaborate to produce a meeting agenda covering the relevant quality fac-
tors, associated quality goals and requirements, sample quality cases, and meeting 
wrap-up (e.g., status of action items and assignment of final new action items). 
Rationale: Agendas enable attendees to identify the most important parts of the 
meeting. 

d. Invite stakeholders. 
Substep: The assessment team sends invitations including the meeting agenda to the 
identified meeting attendees and other stakeholders. 
Rationale: Documented invitations (e.g., email with attached agenda) are conven-
ient for invitees who can add the meeting to their schedules and read the agendas. 

Preparation Task Postconditions 
This task is successfully completed when the following postconditions are met: 

• The subsystem requirements and architecture teams have been trained in the assessment 
method. 
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• The subsystem quality requirements have been derived, prioritized, and allocated to the 
subsystem. 

• The subsystem requirements review preparatory and presentation materials have been 
developed and provided to the assessment team. 

• The assessment team has become familiar with the subsystem and the associated pre-
paratory and presentation materials. 

• The subsystem requirements review meeting has been organized. 

5.2.2 Subsystem Requirements Review – Meeting 
Meeting Task Objectives 
The objectives of this task are to ensure that the 

• quality requirements have been properly derived and allocated to the subsystem 

• assessment team understands what is expected of them during the following Subsystem 
Architecture Assessment Phase 

Meeting Task Duration 
This task usually only lasts one day per subsystem, but it may vary depending on the number 
of subsystem quality requirements and the preparedness of the subsystem architecture team. 

Meeting Task Preconditions 
This task can be started when the following preconditions are met: 

• The subsystem requirements and architecture teams have been trained in the assessment 
method. 

• The subsystem quality requirements have been derived, prioritized, and allocated to the 
subsystem. 

• The subsystem requirements preparatory and presentation materials have been devel-
oped and provided to the assessment team. 

• The assessment team has become familiar with the subsystem and the associated pre-
paratory and presentation materials. 

• The subsystem requirements review meeting has been organized. 

• Action items have been identified, assigned, and scheduled. 

Meeting Task Steps 
Perform the following steps during each requirements review meeting: 

1. Present quality factors. 

Step: The subsystem architecture team demonstrates to the assessment team their under-
standing of the architecturally significant quality factors. 
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Rationale: Misunderstandings concerning the definition and relative importance of the 
quality factors is not uncommon. It is critical to forge a consensus between the require-
ments team, architecture team, and assessment team as to the architecturally significant 
quality factors, subfactors, and their meanings. 

2. Present quality requirements. 

Step: The subsystem requirements team presents a summary of the architecturally sig-
nificant quality requirements to the assessment team. The subsystem requirements team 
also presents their prioritization and scheduling of implementation of these require-
ments. The assessment team raises any concerns they might have that this prioritization 
and scheduling of requirements may not 
− be consistent with the needs of the users and acquisition organization 
− minimize architectural risks 
Rationale: This is a good time to ensure that the architecture team understands the ar-
chitecturally significant quality requirements. This step also gives the assessment team 
confidence that the architects will incorporate these requirements into the subsystem ar-
chitecture. It is critical that architectural implementation be properly scheduled in terms 
of 
− criticality to users and the acquisition organization 
− architecture and implementation difficulty and risk 
− proper implementation order (For example, certain quality factors [e.g., security] 

need to be built into the system early because they would require major changes to 
the architecture if incorporated during later builds.) 

3. Present sample quality case information. 

Step: The subsystem architecture team presents a small representative sample of the 
kind of quality case information they intend to present during the following Subsystem 
Architecture Assessment Phase. They demonstrate to the assessment team that they un-
derstand what is expected of them during the coming assessment meeting by giving a 
few brief representative examples of their intended arguments that their architecture will 
meet its allocated quality-related requirements (i.e., list some important architectural de-
cisions that support these requirements) and associated evidence (e.g., official documen-
tation of these architectural decisions). 

Rationale: Misunderstandings concerning the proper contents of quality cases are not 
uncommon. This step gives the assessment team confidence that the architects will pro-
vide proper quality cases during the following architecture assessment phase. 

4. Provide guidance. 

Step: The assessment team gives the subsystem requirements team recommendations for 
improving the quality (e.g., completeness, lack of ambiguity, and verifiability) of the 
quality requirements. The assessment team gives the architecture team recommendations 
for improving their proposed quality cases (e.g., arguments and evidence). For example, 
they should avoid using plans and development processes as “arguments” and planning 
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and procedures documents as “evidence.” These documents are inappropriate because 
they are not architectural decisions and not documentation of architectural decisions. 
The assessment team also answers any questions that members of the subsystem re-
quirements and architecture teams might have (e.g., regarding quality cases and the 
coming architecture assessment meeting). 

Rationale: In spite of training provided during the preceding subsystem requirements 
review preparation task, members of the requirements team can often benefit from guid-
ance regarding the proper form of quality requirements, which will enable them to im-
prove the requirements before the architecture team creates the subsystem architecture. 
Similarly, the architecture team’s need for guidance in the proper form and content of 
quality cases is often only clear once they present their initial representative examples of 
quality cases. 

5. Determine special assessment team staffing needs. 

Step: The assessment team and subsystem architecture team collaborate to determine if 
the assessment team needs to be augmented with members having particular expertise 
such as specialty engineering expertise (e.g., reliability, safety, or security engineering) 
or expertise in important application domains (e.g., communications or sensor technol-
ogy). 

Rationale: It is important that the assessment team include members with adequate 
training and experience to properly assess the architecture of the subsystem, including 
people with both specialty engineering or application domain expertise. The subsystem 
architecture team can best identify any important application domains that apply to their 
subsystem. 

6. Schedule coming events. 

Step: The assessment team and subsystem architecture team collaborate to schedule the 
coming assessment meeting and its associated preparation steps (e.g., dates by which the 
architecture team will provide the assessment team with advanced access to their argu-
ments and evidence). 

Rationale: Scheduling enables stakeholders to update their schedules and avoid sched-
ule conflicts. 

7. Manage action items. 

Step: The assessment team collaborates with the subsystem requirements and subsystem 
architecture teams to collect, identify, and record any action items from the meeting. 
This includes setting due dates and assigning the action items to appropriate people. Ex-
amples of common action items include 
− Members of the subsystem requirements team and subsystem architecture team are 

assigned requests for information (RFI) and requests for action (RFA) by the assess-
ment team. 
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− The assessment team members are assigned the tasks of supplying their requirements 
review meeting notes to the team scribe. 

− The assessment team leader is assigned the tasks of producing the subsystem re-
quirements review outbrief. 

− The assessment team members are assigned the task of reviewing the outbrief before 
it is presented to the subsystem requirements team, subsystem architecture team, and 
any other meeting attendees or stakeholders (e.g., managers and members of the top-
level architecture team). 

− The assessment team leader presents the outbrief to the meeting attendees and any 
other interested stakeholders. 

− Assessment team members are assigned the tasks of producing, reviewing, and dis-
tributing the subsystem requirements review meeting minutes. 

Rationale: Unless action items are assigned and due dates are scheduled, the action 
items are unlikely to be properly handled in a timely manner and properly tracked to 
completion. 

Meeting Task Postconditions 
This task is successfully completed when the following postconditions are met: 

• The subsystem requirements team has presented the subsystem quality factors and asso-
ciated subsystem quality requirements. 

• The subsystem architecture team has presented sample subsystem quality cases. 

• The assessment team has provided guidance to the subsystem requirements and architec-
ture teams. 

• The meeting attendees have collaborated to determine if any special assessment staffing 
needs exist. 

• The subsystem architecture assessment meeting has been scheduled. 

5.2.3 Subsystem Requirements Review – Follow-Through 
Follow-Through Task Objective 
The objectives of this task are to ensure that the 

• requirements review outbrief is produced and presented to the relevant stakeholders 

• meeting minutes are produced and distributed to relevant stakeholders 

• action items are tracked to completion 

Follow-Through Task Duration 
This task usually takes 

• several days, depending on staffing availability, to complete the meeting minutes 

• a few weeks to track action items to completion, depending on the number and type of 
action items 
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Follow-Through Task Preconditions 
This task can be started when the following preconditions are met: 

• The subsystem requirements team has presented the subsystem quality factors and asso-
ciated subsystem quality requirements. 

• The subsystem architecture team has presented sample subsystem quality cases. 

• The assessment team has provided guidance to the subsystem requirements and architec-
ture teams. 

• The meeting attendees have collaborated to determine if any special assessment staffing 
needs exist. 

• The subsystem architecture assessment meeting has been scheduled. 

Follow-Through Task Steps 
After each requirements review meeting but before the associated architecture assessment 
meeting, the following steps are performed in a timely manner: 

1. Produce, review, and present requirements review outbrief. 

Step: Within a day or two of the requirements review meeting and before leaving the site 
of the requirements review 
a. The members of the assessment team (especially the assessment team scribe) pro-

vide the leader of the assessment team with their meeting notes. 
b. The leader of the assessment team produces an initial version of the requirement 

review outbrief. 
c. The assessment team members review the outbrief to ensure that it correctly sum-

marizes the results of the subsystem requirements review.  
d. The leader of the assessment team iterates the requirements review outbrief to in-

corporate the comments and recommendations of the assessment team members. 
e. The leader of the assessment team presents the outbrief to the attendees and avail-

able stakeholders of the subsystem requirements review. 

Rationale: It is important to provide an informal outbrief at the end of the requirements 
review meeting so that attendees and stakeholders need not wait several weeks to obtain 
a clear indication of the results of the meeting. 

2. Produce, review, and distribute requirements review meeting minutes. 

Step: Within a couple of weeks of the requirements review meeting 
a. Members of the assessment team provide their notes to the members of the team 

tasked to produce the requirements review meeting minutes.39 

                                                 
39 A subset of the assessment team may be tasked to produce the entire requirement review meeting 

minutes. On the other hand, the assessment team may be divided into pairs which are tasked to 
produce different subsections of the meeting minutes. The choice of approach may vary depending 
on the size and formality of the requirements review meeting minutes, which could contain a sig-
nificant number of observations and recommendations. In fact, depending on the importance given 
to the requirement review, a report may replace less formal meeting minutes. 
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b. The selected members of the assessment team produce an initial version of the re-
quirements review meeting minutes. 

c. The assessment team members review the requirements review meeting minutes to 
ensure that they correctly record the results of the subsystem requirements review.  

d. The assessment team leader iterates the requirements review meeting minutes to in-
corporate the comments and recommendations of the assessment team members. 

e. The leader of the assessment team leader distributes the requirements review meet-
ing minutes to stakeholders.  

Rationale: It is important to document relevant observations and agreements (e.g., 
schedule dates) in a form available to all relevant stakeholders. 

3. Track action items to completion. 

Step: The assessment team tracks open action items to completion. 

Rationale: Unless action items are assigned and due dates are scheduled, the action 
items are unlikely to be properly handled in a timely manner and properly tracked to 
completion. 

4. Capture lessons learned. 

Step: The assessment team collaborates with the subsystem requirements and subsystem 
architecture teams to capture lessons learned about the effectiveness of the subsystem 
requirements review phase of the QUASAR assessment. 

Rationale: This enables the method to be continually improved and tailored for future 
subsystem requirements reviews and use on future projects. 

5. Update assessment method and associated training materials. 

Step: Based on the lessons learned, the project process team40 updates the project-
tailored QUASAR assessment procedure and the associated QUASAR training materi-
als. Where appropriate, they also provide the SEI with the lessons learned and updated 
procedure and training materials so that the official QUASAR documentation can be it-
erated. 

Rationale: Updating the QUASAR enables the process to be improved on future subsys-
tem requirements reviews and other projects. 

Follow-Through Task Postconditions 
This task is successfully completed when the following postconditions are met: 

• The subsystem requirements team has presented the subsystem quality factors and asso-
ciated subsystem quality requirements. 

• The subsystem architecture team has presented sample subsystem quality cases. 

                                                 
40 If an official “project process team” (e.g., system engineering process group [SEPG]) does not 

exist, then whichever team, group, or individual that is filling the process engineer role should 
perform this task. 
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• The assessment team has provided guidance to the subsystem requirements and architec-
ture teams. 

• The meeting attendees have collaborated to determine if any special assessment staffing 
needs exist. 

• The subsystem architecture assessment meeting has been scheduled. 

• Open action items have been tracked to completion. 

5.3 Subsystem Architecture Assessment Phase 
Phase Objective 
The objective of this phase is to assess the quality of a subsystem architecture in terms of its 
derived and allocated architecturally significant requirements. 

Phase Duration 
The duration of this phase typically lasts a few weeks, with most of the time being spent on 
preparation and follow-through, rather than on the actual assessment meeting, which should 
last only one or two days.  

Phase Tasks 
As illustrated in Figure 15, perform the following tasks for each subsystem (or other major 
element of the architecture) to be assessed: 

1. Subsystem Architecture Assessment – Preparation 

The assessment team prepares by exchanging and reading relevant documentation pro-
vided by the subsystem architecture team. 

2. Subsystem Architecture Assessment – Meeting 

The subsystem architecture team presents to the assessment team quality cases showing 
that their architecture adequately supports its relevant architecturally significant re-
quirements. 

3. Subsystem Architecture Assessment – Follow-Through 

The assessment team reports their findings and recommendations to the subsystem ar-
chitecture team and other stakeholders. 

5.3.1 Subsystem Architecture Assessment – Preparation 
Meeting Task Objectives 
The objectives of this task are as follows: 

• The architecture team presents their quality cases to the assessment team. 

• The assessment team actively questions the architecture team to identify 
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− architecture defects and weaknesses (both by commission and omission) 
− architectural risks 

Preparation Task Duration 
The duration of this task is typically a few weeks per subsystem. Note that preparation does 
not include developing the subsystem architecture, which should naturally include the devel-
opment of the architects’ arguments (architectural decisions including rationales) and result in 
documentation that will become the quality case evidence. That being said, the duration may 
still vary depending on the 

• size and complexity of the subsystem architecture 

• number of quality cases to be developed and presented 

• amount of preparatory materials to be produced and read 

• skill, expertise, and productivity of the teams involved 
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Figure 15: Subsystem Architecture Assessment Phase 
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Preparation Task Preconditions 
This task can be started when the subsystem architecture is sufficiently complete and mature 
enough to be assessed. 

Preparation Task Steps 
Prior to each subsystem architecture assessment meeting, perform the following steps: 

1. Provide architecture assessment checklist. 

Step: The assessment team supplies the subsystem architecture team with the architec-
ture assessment checklist that they will use during the assessment. 

Rationale: This enables the subsystem architecture team to better prepare for the com-
ing assessment. 

2. Generate preparatory materials including architecture quality cases. 

Step: The subsystem architecture team develops the subsystem architecture assessment 
preparatory materials. 

Rationale: These materials help the assessment team better prepare for the assessment 
meeting. 
a. Gather subsystem architecture overview. 

Substep: The subsystem architecture team gathers (or generates if necessary) an 
overview of the subsystem architecture (e.g., architecture training material). 
Rationale: An architecture overview helps the assessment team better understand 
the subsystem architecture team’s quality cases. 

b. Gather updated quality requirements. 
 Substep: The subsystem architecture team gathers any updates to the architecturally 

significant requirements that are derived and allocated to the subsystem. 
Rationale: Such requirements drive the architecture and associated quality cases. 
The assessment team may not know about changes that have occurred since the 
subsystem requirements review. 

c. Gather quality cases. 
Substep: The subsystem architecture team gathers (or generates if necessary41) the 
architecture quality cases for each appropriate quality factor and quality subfactor. 
Rationale: The most important part of the subsystem architecture assessment pre-
paratory materials are the quality cases. The assessment team needs to have these 

                                                 
41 Optimally, the architects should incrementally develop and document their architecture quality 

cases as they architect subsystems. Specifically, arguments and associated evidence should be cre-
ated as a natural part of the architectural documentation. Unfortunately, most architectural docu-
mentation does not adequately document the decisions that the architects made to achieve ade-
quate quality and the associated rationales. Even if the information exists, it is often scattered 
throughout large amounts of other architectural information, making it difficult for the assessors to 
access. 
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early in order to prepare for the meeting (e.g., develop questions for the subsystem 
architecture team). 
− Gather claims. 

Substep: Based on the relevant quality factors and subfactors, the subsystem ar-
chitecture team gathers (or generates) claims that their architecture adequately 
supports achieving its allocated quality goals and meets its associated allocated 
and derived quality-related requirements. 
Rationale: The assessment team needs to clearly understand the architects’ 
claims if they are to decide if the arguments and supporting evidence justify be-
lief in the claims. In other words, the assessors need to know how good the archi-
tecture has to be. 

− Generate arguments. 
Substep: The subsystem architecture team generates clear and compelling argu-
ments as to why their architecture adequately supports its allocated and derived 
quality-related requirements. 
Rationale: The arguments are the key to the quality case, informing the assessors 
of the architectural decisions and their rationales. The assessment team cannot 
adequately assess the quality of the architecture without hearing these arguments. 

− Gather supporting evidence. 
Substep: The subsystem architecture team collects and organizes official evi-
dence supporting their arguments. They provide an index, pointers, or some other 
means to identify the relevant information. 
Rationale: The assessment team needs to sample a representative collection of 
the evidence to ensure that the architecture decisions documented in the argu-
ments actually exist. These evidentiary diagrams, models, and documents pro-
vide insight into the architecture beyond the arguments, enabling the assessment 
team to understand the strengths and weaknesses of the architecture’s support for 
the various types of quality requirements. 

3. Develop subsystem architecture presentation materials. 

Step: The subsystem architecture team develops the materials that they are going to pre-
sent to the assessment team during the subsystem architecture assessment meeting. 

Rationale: The presentation materials are provided to the assessment team prior to the 
assessment to help them prepare, making the actual assessment meeting more effective 
and productive. 
a. Create a brief subsystem architecture overview. 

Substep: The subsystem architecture team generates a very brief presentation over-
view of the subsystem architecture. It summarizes the subsystem introduction con-
tained in the subsystem preparation materials. 
Rationale: During the subsystem architecture assessment meeting, a very brief ar-
chitecture overview helps the assessment team understand the subsystem architec-
ture team’s quality cases. This is especially helpful for attendees who did not read 
the preparatory materials. 

b. Create a brief summary of the architecture quality cases.  
Substep: On a quality factor-by-quality factor basis, the subsystem architecture 
team generates a brief summary presentation of each architecture quality case. 
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Rationale: Due to time constraints, the subsystem architecture team presents a brief 
summary of the architecture quality cases to the assessment team during the subsys-
tem architecture assessment meeting. The subsystem architecture team also pro-
vides the assessment team access to these summary quality cases ahead of the meet-
ing, so that the meeting is effective and productive. 

4. Make preparatory and presentation materials available. 

Step: The subsystem architecture team provides the assessment team with electronic ac-
cess to their architecture assessment preparatory and presentation materials the agreed 
upon number of weeks (typically two to three) prior to the architecture assessment meet-
ing. 

Rationale: The members of the assessment team require adequate lead time to read the 
preparatory and presentation meetings materials. 

5. Obtain and read preparatory and presentation materials. 

Step: Prior to the subsystem architecture assessment meeting, the assessment team ob-
tains and reads the architecture team’s preparatory and presentation materials. 

Rationale: This enables the assessment team to properly prepare for the assessment. 

6. Submit preliminary RFIs and RFAs. 

Step: Prior to the subsystem architecture assessment meeting, and based on their review 
of the preparatory and presentation materials, members of the assessment team poten-
tially develop and submit to the subsystem architecture team RFIs  and RFAs. RFIs usu-
ally consist of questions and requests for clarifications of the architecture quality cases 
and RFAs are requests for additional evidence or pointers to relevant parts of large and 
complex evidentiary documentation. 

Rationale: This enables the subsystem architecture team to supply the requested infor-
mation either prior to or during the subsystem architecture assessment meeting. 

7. Organize the meeting. 

Step: At least two weeks prior to the subsystem architecture assessment meeting, the as-
sessment team and subsystem architecture team collaborate to 
a. Identify meeting attendees and other stakeholders. 

Substep: The assessment team and subsystem architecture team develop a list of 
meeting attendees and other stakeholders who should receive copies of the meeting 
preparatory and presentation materials. 
Rationale: It is important to ensure that no significant stakeholder is overlooked. 

b. Set time and location. 
Substep: The assessment team and subsystem architecture team determine an exact 
time and location (e.g., address, building number, and room number) for the sub-
system architecture assessment meeting. 
Rationale: Attendees need an exact time to avoid schedule conflicts. 
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c. Develop meeting agenda. 
Substep: The assessment team and subsystem architecture team set up a meeting 
agenda that covers introducing the subsystem, reviewing the requirements, intro-
ducing the architecture, presenting and probing the individual quality cases, and 
wrapping up the meeting by assigning action items. 
Rationale: Agendas are important to enable attendees to determine if they must at-
tend only certain parts of the meeting (e.g., reliability, safety, and security specialty 
engineers may only need to attend during the presentation of the associated safety 
cases). 

d. Invite stakeholders. 
Substep: The assessment team sends invitations including the meeting agenda to the 
identified meeting attendees and other stakeholders. 
Rationale: Documented invitations (e.g., email with attached agenda) are conven-
ient for invitees who can add the meeting to their schedules and read the agendas. 

Preparation Task Postconditions 
This task is successfully completed when the following postconditions are met: 

• The subsystem architecture team is ready for the subsystem architecture assessment 
meeting when 
− The subsystem architecture team has received the architecture assessment checklist. 
− The subsystem architecture team has generated architecture assessment preparatory 

and presentation materials. 
• The assessment team is ready for the subsystem architecture assessment meeting when 

− The assessment team had obtained and read the preparatory and presentation materi-
als generated by the subsystem architecture team. 

− The assessment team has submitted any preliminary RFIs and RFAs to the subsystem 
assessment team. 

• The subsystem architecture assessment meeting is organized. 

5.3.2 Subsystem Architecture Assessment – Meeting 
Meeting Task Objectives 
The objectives of this task are as follows: 

• Present quality cases. The architecture team presents their quality cases to the assess-
ment team. 

• Probe architecture. The assessment team actively questions the architecture team to 
identify 
− architecture defects and weaknesses (both by commission and omission) 
− architectural risks 
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Meeting Task Duration 
The duration of this task is typically one day per subsystem (or two hours per quality factor). 
However, the duration may vary depending on the 

• size and complexity of the subsystem architecture 

• number of quality cases presented 

• number of architectural defects and risks found 

• skill, expertise, and productivity of the teams involved 

Meeting Task Preconditions 
This task can be started when the following preconditions are met: 

• The subsystem architecture team is ready for the subsystem architecture assessment 
meeting when 
− The subsystem architecture team has received the architecture assessment checklist. 
− The subsystem architecture team has generated architecture assessment preparatory 

and presentation materials. 
• The assessment team is ready for the subsystem architecture assessment meeting when 

− The assessment team has obtained and read the preparatory and presentation materi-
als generated by the subsystem architecture team. 

− The assessment team has submitted any preliminary RFIs and RFAs to the subsystem 
assessment team. 

• The subsystem architecture assessment meeting is organized. 

Meeting Task Steps 
During each architecture assessment meeting, perform the following steps: 

1. Introduce the subsystem. 

Step: The subsystem architecture team presents to the assessment team a brief introduc-
tion to the subsystem. This introduction includes the 
− primary purpose of the subsystem 
− placement of the subsystem is in the overall hierarchy of the system architecture 

(e.g., composition diagram) 
− context of the subsystem, including the other subsystems with which it interfaces 

(e.g., a context diagram) 
− primary functions that are allocated to the subsystem 
Rationale: This step helps to set the stage for the following steps and ensures that the 
assessment team members truly understand the basics of the subsystem. 

2. Review the requirements. 

Step: The subsystem architecture team presents to the assessment team a brief review of 
the architecturally significant quality requirements that drive the architecture of the sub-
system. They concentrate on the 
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− quality factors important to the subsystem including their relative priorities and con-
flicts 

− associated goals that have been derived and allocated to the subsystem 
− critical quality requirements 
Rationale: This step reminds everyone of the quality factors driving the architecture de-
cisions made by the architecture team. It provides an overview of the content of the 
quality case claims and the motivation for the quality case arguments. 

3. Introduce the architecture. 

Step: The subsystem architecture team presents to the assessment team a brief introduc-
tion of the architecture of the subsystem including the 
− main components of the subsystem including name and purpose 
− major relationships between these components of the subsystem and with external 

subsystems, systems, and users 
− overview of the most important architecture decisions and their rationales 
− major engineering tradeoffs made to support conflicting quality factors 
Rationale: If members of the assessment team do not get an overview of the architecture 
and its key decisions before delving into the individual quality cases, there is a danger of 
“missing the forest for the trees.” Because individual quality cases are specific to indi-
vidual quality factors, this is the appropriate step for assessing the tradeoffs the archi-
tects had to make between conflicting quality factors (e.g., increasing security may de-
crease performance). This is also when the assessment team determines if the architects’ 
“story” of the architecture is cohesive and consistent. 

The remaining steps are performed once for each quality factor on a quality case-by-quality 
case basis. 

1. Present individual quality cases. 

Step: The subsystem architecture team presents to the assessment team their individual 
quality cases, including the following components for each quality case: 
a. Brief Summary 

A brief summary of the quality case (e.g., quality case diagram) 
b. Claims 

The architects’ claims consist of quality goals and requirements sufficiently sup-
ported by their architecture decisions. Goals can be that the architecture provides a 
sufficient amount of a specific quality factor (e.g., performance) or quality subfac-
tor (e.g., response time or throughput). Requirements should be explicitly stated 
rather than merely referencing requirements identifiers. 

c. Arguments 
The architects present clear and compelling arguments that their architecture justi-
fies belief in their claims. Arguments consist of their architectural decisions and as-
sociated rationales. Rationales should also include any specific engineering trade-
offs they made to support conflicting quality factors. 

CMU/SEI-2006-HB-001 91 



 

d. Evidence 
The architects present official evidence supporting their arguments. Evidence typi-
cally consists of diagrams and references to relevant parts of models and docu-
ments. Evidence can also consist of demonstrations witnessed by members of the 
assessment team.42

Rationale: This is the key step of the architecture assessment when the architecture team 
attempts to convince the assessment team that their architecture is good enough to pass 
the assessment. It presents the quality cases in a logical structure that emphasizes its key 
components and their relationships. 

2. Probe the architecture. 

Step: The assessment team probes the architecture and quality cases, looking for archi-
tecture defects and weaknesses (both by commission and omission), architecture risks, 
and potential areas of improvement. Based on their reading the preparatory materials 
and the presentations made during the meeting, the assessment team asks members of 
the subsystem architecture team probing questions to 
− clarify or expand on their arguments 
− display specific evidence backing up their arguments 
− clarify engineering tradeoffs made to support quality requirements for conflicting 

quality factors 
− dive deeper into certain areas of the architecture (e.g., lower level tiers and subsys-

tems) 
− use one or more scenarios as test cases to test the architecture’s support for a quality 

requirement 
− provide additional arguments and evidence43 
Rationale: A natural tendency for the subsystem architecture team is to concentrate on 
the strengths of their architecture when presenting quality cases. It is important for the 
assessment team to help the subsystem architecture team identify any defects and weak-
nesses in their architecture early when they are easier and less expensive to fix. This is 
especially true of missing architecture decisions (i.e., omission), which are easy for the 
subsystem architecture team to overlook. 

3. Manage action items. 

Step: The assessment team collaborates with the subsystem architecture team to collect, 
identify, and record action items. This includes setting due dates and assigning the action 
items to appropriate people. Typical meeting action items include 

                                                 
42 Demonstrations often occur later, for instance during a visit to a development laboratory. 

43 Depending on the additional information requested, the architecture team may be able to provide 
this information immediately, later during the meeting, or during the following Follow-Through 
task. 
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− Members of the subsystem architecture team are assigned RFIs and RFAs by the as-
sessment team (e.g., finding and providing missing arguments and evidence to the as-
sessment team). 

− The assessment team members are assigned the tasks of supplying their assessment 
notes to the assessment team scribe. 

− The assessment team leader is assigned the task of producing the assessment outbrief. 
− The assessment team members are assigned the task of reviewing the outbrief before 

it is presented to the subsystem architecture team and any other meeting attendees or 
stakeholders (e.g., managers, members of the top-level architecture team, and mem-
bers of the subsystem requirements team). 

− The assessment team leader presents the outbrief to the meeting attendees and other 
interested stakeholders. 

− Assessment team members are assigned the tasks of producing, reviewing, and dis-
tributing the subsystem architecture assessment report. 

Rationale: Unless action items are assigned and due dates are scheduled, the action 
items are unlikely to be properly handled in a timely manner and tracked to completion.  

Meeting Task Postconditions 
This task is successfully completed when the following postconditions are met: 

• The subsystem architects have presented an introduction of their subsystem to the as-
sessment team. 

• The subsystem architects have presented a review of the relevant quality requirements to 
the assessment team. 

• The subsystem architects have presented an introduction of their subsystem architecture 
to the assessment team. 

• The subsystem architects have presented their quality cases to the assessment team. 

• The assessment team has probed the subsystem architecture. 

• Action items have been captured, assigned, and scheduled. 

5.3.3 Subsystem Architecture Assessment – Follow-Through 
Follow-Through Task Objectives 
The objectives of this task are to 

• Develop a Consensus 

The assessment team develops a consensus regarding the quality of the subsystem archi-
tecture. 

• Present a Meeting Outbrief 

The assessment team presents an outbrief of the assessment results to the meeting atten-
dees. 
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• Produce Final Subsystem Architecture Assessment Report 

The assessment team produces a final version of the subsystem architecture assessment 
report. 

• Track Action Items 

Action items from the subsystem architecture assessment are tracked to completion. 

• Capture Lessons Learned 

Lessons learned regarding the subsystem architecture assessment phase are captured. 

• Update Assessment Method and Training Materials 

The lessons learned are used to update the system architecture assessment method and 
its associated training materials. 

Follow-Through Task Duration 
The duration of this task usually a few weeks, with the majority of the effort spent on the de-
velopment of the assessment report. 

Follow-Through Task Preconditions 
This task can be started when the following preconditions are met: 

• The subsystem architects have presented an introduction of their subsystem to the as-
sessment team. 

• The subsystem architects have presented a review of the relevant quality requirements to 
the assessment team. 

• The subsystem architects have presented an introduction of their subsystem architecture 
to the assessment team. 

• The subsystem architects have presented their quality cases to the assessment team. 

• The assessment team has probed the subsystem architecture. 

• Action items have been captured, assigned, and scheduled. 

Follow-Through Task Steps 
After each subsystem architecture assessment meeting, the following steps are performed in a 
timely manner: 

1. Pool, discuss, and obtain consensus on observations and recommendations. 

Step: Once the subsystem architecture assessment meeting is over and the architects 
have left the room, the meeting attendees on a quality case-by-quality case basis use 
their meeting notes as a basis to pool and discuss their observations and recommenda-
tions. 

Rationale: It is important for the meeting attendees to discuss their observations and 
recommendations while they are still fresh in everyone’s minds. This enables them to 
develop a consensus concerning how well the architecture assessed supports its allocated 
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quality-related requirements. This, in turn, forms the basis for the contents of the meet-
ing outbrief and report. 

2. Produce, review, and present subsystem architecture assessment outbrief. 

Step: Within a day or two of the subsystem architecture assessment meeting and before 
leaving the site of the meeting: 
a. The members of the assessment team (especially the assessment team scribe) pro-

vide the leader of the assessment team with meeting notes. 
b. The leader of the assessment team produces an initial version of the subsystem ar-

chitecture assessment outbrief. 
c. The assessment team members review the outbrief to ensure that it correctly sum-

marizes the results of the subsystem architecture assessment.  
d. The leader of the assessment team iterates the subsystem architecture assessment 

outbrief to incorporate the comments and recommendations of the assessment team 
members. 

e. The leader of the assessment team presents the outbrief to the attendees and avail-
able stakeholders of the subsystem architecture assessment. 

Rationale: It is important to provide an informal outbrief at the end of the subsystem ar-
chitecture assessment meeting so that attendees and stakeholders need not wait several 
weeks to obtain a clear indication of the results of the meeting. 

3. Produce, review, and distribute subsystem architecture assessment report. 

Step: Within a couple of weeks of the subsystem architecture assessment meeting, com-
plete the following steps: 
a. Members of the assessment team provide their notes to the members of the team 

tasked to produce the subsystem architecture assessment report.44 
b. Selected members of the assessment team produce an initial version of the subsys-

tem architecture assessment report. 
c. The assessment team members review the subsystem architecture assessment report 

to ensure that it correctly records the results of the subsystem architecture assess-
ment.  

d. The leader of the assessment team iterates the subsystem architecture assessment 
report to incorporate the comments and recommendations of the assessment team 
members. 

e. The assessment team distributes the subsystem architecture assessment report to its 
stakeholders. 

Rationale: This is the primary output of this phase and forms the basis of the system ar-
chitecture quality assessment summary report. 

                                                 
44 A subset of the assessment team may be tasked to produce the entire subsystem architecture as-

sessment report. On the other hand, the assessment team may be divided into pairs which are 
tasked to produce different subsections of the meeting report. The choice of approach may vary 
depending on the size and formality of the subsystem architecture assessment meeting report, 
which could contain a significant number of observations and recommendations. 
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4. Track action items to completion. 

Step: The assessment team tracks open action items to completion. 

Rationale: Unless action items are assigned and due dates are scheduled, the action 
items are unlikely to be properly handled in a timely manner and tracked to completion. 

5. Capture lessons learned. 

Step: The assessment team collaborates with the subsystem architecture team to capture 
lessons learned about the effectiveness of the subsystem architecture assessment phase 
of the QUASAR method. 

Rationale: This enables the method to be continually improved and tailored for future 
subsystem assessments and use on future projects. 

6. Update assessment method and associated training materials. 

Step: Based on the lessons learned, the project process team45 updates the project-
tailored QUASAR procedure and the associated QUASAR training materials. Where 
appropriate, they also provide the SEI with the lessons learned and updated procedure 
and training materials so that the official QUASAR documentation can be iterated. 

Rationale: Updating the QUASAR method enables the process to be improved on future 
subsystem architecture assessment phases and future projects. 

Follow-Through Task Postconditions 
This task is successfully completed when the following postconditions are met: 

• The assessment team has presented the subsystem architecture assessment outbrief to 
attendees of the meeting. 

• The assessment team has completed the subsystem architecture assessment report and 
distributes it to its stakeholders. 

• Action items from the meeting have been tracked to completion. 

• Lessons learned about the assessment method have been incorporated into the method 
and associated training materials. 

5.4 System Architecture Assessment Summary 
Phase 

Depending on the approach chosen to summarize the results of the overall architecture qual-
ity assessment, a system architecture assessment summary phase occurs 

• once, at the end of the QUASAR assessment 

                                                 
45 If an official “project process team” (e.g., system engineering process group [SEPG]) does not 

exist, then whichever team, group, or individual that is filling the process engineer role should 
perform this task. 
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• incrementally, before major milestone reviews (in order to feed into these reviews) 

• in an ongoing, incremental manner as the quality of the subsystem architectures are as-
sessed  

Phase Objectives 
The objectives of this phase are to 

• Collect the results of all of the preceding subsystem architecture quality assessments and 
document the resulting overall quality assessment of the system’s architecture. 

• Perform a final outbrief capturing what went well and what could be improved regarding 
the system architecture quality assessment process. 

Phase Tasks 
As illustrated in Figure 15 on page 85, the system architecture assessment summary phase 
consists of the following three tasks, which are performed sequentially: 

1. System Architecture Assessment Summary – Preparation 

2. System Architecture Assessment Summary – Initial Kickoff Meeting 

3. System Architecture Assessment Summary – Follow-Through 

Summarizing the Results of the Individual Subsystem Architecture Assessments 
There are three basic ways that the results of the individual subsystem architecture quality 
assessments can be summarized into a final assessment of the quality of the overall system. 
Therefore, one of the goals of tailoring the QUASAR method is to select one or more of the 
most appropriate of these summarization approaches based on the needs of the organizations 
involved. Each approach to summarizing the results of the individual subsystem architecture 
quality assessments has its own advantages and disadvantages. The selected summarization 
approaches should meet the specific needs of the stakeholder organizations and best address 
the primary reasons for performing the architecture assessments. An approach should be se-
lected from the following list: 

1. Average of Subsystem Architecture Quality 

When using this approach, the quality of the system architecture is the [weighted] aver-
age of the qualities of its subsystem architectures. Assume that the assessment team has 
already used their expert judgment to assign a color value (e.g., green, yellow, and red) 
to the subsystem architecture’s support for each individual quality factor’s set of associ-
ated quality requirements (e.g., a subsystem’s architectural support for interoperability is 
green, reliability is yellow, and performance is red). The assessment team then assigns 
each color a standard numerical value (e.g., green = 2, yellow = 1, and red = 0). If ap-
propriate, the assessment team assigns each quality factor a numerical weight based on 
the criticality of that quality factor to the subsystem’s architecture and also assigns a 

CMU/SEI-2006-HB-001 97 



 

numerical weight to the criticality of that subsystem’s architecture to the quality of the 
overall architecture of the system.46

a. Advantages 
− When properly defined for the entire set of subsystem architecture assessments, 

the averaging approach provides a standard way to compare the results of multi-
ple subsystem architecture quality assessments. 

− This approach provides a simplified answer to the question: “What is the quality 
of the system’s architecture?” 

b. Disadvantages 
− This approach attempts to build an “objective” numerical structure on top of a 

foundation of “subjective” expert opinion (a Delphi approach). It “mixes apples 
and oranges” in a statistically highly questionable manner. 

− Although this approach provides the appearance of numerical legitimacy, the re-
sulting value it provides is probably far less accurate and precise than it seems. 

− It is extremely difficult to quickly and easily set the numerical color values and 
weightings in a manner that supports the goals of the assessment. This can be-
come a major source of disagreement and wasted time. 

− This approach is by far the most complex and labor intensive to use. 
− Useful information is lost because this approach does not clearly identify those 

parts of the overall system architecture that still need work, what kind of problem 
exists (e.g., safety, security, usability), or even the severity of the problem. 

− It is highly questionable if the extra effort needed to provide this kind of average 
assessment is worth the questionable value derived given its potential disadvan-
tages.  

c. Appropriateness 
This approach is not recommended. If used, its use should probably be restricted to 
organizational internal assessments, the goal of which is to obtain a rough indica-
tion of the overall quality of the system architecture.  

2. Worst Subsystem Architecture Quality 

In this approach, the quality of the overall system architecture is equated with the worst 
quality subsystem architecture. Assign the worst value of any subsystem architecture 
quality assessment as the value of all of its super-systems including the overall system. 
Thus, if the quality of any subsystem’s architecture for any cohesive set of quality re-
quirements (i.e., associated with any quality factor) is red, then the quality of the overall 
system architecture is also red. 
a. Advantages 

− The approach is objective and easy to apply. 
− This approach provides a great incentive for the architects to fix any problems 

that prevent a subsystem’s architecture from adequately supporting a quality re-
quirement. 

                                                 
46 Note that the definitions for colors and weightings should be well-defined and standardized across 

all subsystems of the system. 
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− It provides a simple answer to the question: “What is the quality of the system’s 
architecture?” 

b. Disadvantages 
− This approach denies the architects credit for all of the good architectural deci-

sions they have made; a single subsystem’s architecture failing to adequately 
support a single quality requirement is sufficient cause for the entire system ar-
chitecture to “fail” the assessment. 

− This approach does not take into account that all quality requirements and all 
subsystem architectures are not equally critical. 

c. Appropriateness 
This approach is probably best used for assessing contract compliance because one 
could argue that if a subsystem’s architecture does not adequately support a quality 
requirement, then the overall system’s architecture also does not adequately support 
that same quality requirement.  

3. Union of Subsystem Architecture Qualities 

With this summarization approach, the quality of the overall system architecture is the 
union of the qualities of its subsystem architectures. Collect and collate the information 
from all of the subsystem architecture quality assessments into one or more matrices that 
shows a mapping from the subsystem (i.e., matrix row) and quality factor (i.e., matrix 
column) to its associated quality representing color (i.e., associated cell in the matrix). 
a. Advantages 

− The approach is objective and relatively easy to apply. 
− This approach clearly identifies those parts of the overall system architecture that 

still need work, what kind of problem exists (e.g., safety, security, usability), or 
the severity of a problem. 

− This approach provides full credit for all of the good architectural decisions that 
the architects made; a single subsystem’s architecture failing to adequately sup-
port a single quality requirement is not sufficient to cause the entire architecture 
to “fail” the assessment. 

− This approach takes into account the fact that all quality requirements and all 
subsystem architectures are not equally critical. 

− This approach provides an ongoing, iterative, and incremental summary of the 
system architecture as the qualities of its subsystem architectures are assessed. 

− No information is lost in producing a single overall numerical (or color) value for 
the quality of the overall system architecture. 

− This approach can be easily combined with the previous approaches.  
b. Disadvantages 

− This approach does not provide a single, simple answer to the question: “What is 
the quality of the system’s architecture?”47 

− This approach may not be acceptable to managers who demand such a single an-
swer to the question. 

                                                 
47  Then again, there may not be any reasonable single answer to that question. 
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− On really large systems in which the architectures of many subsystems are as-
sessed, the result of this approach becomes somewhat more difficult to evaluate 
as the scope of the assessment increases in numbers of subsystems and numbers 
of quality factors. 

c. Appropriateness 
This approach should probably always be used, regardless of whether any of the 
preceding approaches are also used. This approach should definitely be used if the 
primary reason for performing the architecture quality assessments is to determine 
how to allocate limited resources for improving the subsystem architectures.  

5.4.1 System Architecture Assessment Summary – 
Preparation 

Preparation Task Objective 
The objectives of this task are to 

• Gather the results of the quality assessments of the individual subsystem architectures 
that are within the scope of the overall system architecture’s quality assessment.  

• Organize and summarize the results in preparation for the system architecture assess-
ment summary meeting. 

Preparation Task Duration 
The duration of this task varies depending on whether the final phase occurs 

• once, at the end of all of the individual subsystem architecture quality assessments 

• prior to each major project milestone meeting during which the state of the system archi-
tecture is presented 

• on an ongoing basis as the individual subsystem architecture quality assessments are 
performed 

Preparation Task Preconditions 
This task can be started when all (or a sufficient number for an intermediate system architec-
ture assessment summary) of the subsystem architecture assessments have been completed. 

Preparation Task Steps 
The following steps are performed during this task: 

1. Collect individual subsystem architecture quality assessments. 

Step: The assessment team collects the results of the individual subsystem architecture 
quality assessments. 

Rationale: The overall system architecture quality assessment is a summation of the in-
dividual subsystem architecture quality assessments. 
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2. Summarize subsystem architecture quality assessment results. 

Step: Using the agreed-upon summarization process, the assessment team organizes and 
summarizes the individual subsystem architecture quality assessments results in prepara-
tion for the system architecture assessment summary meeting. This includes creating the 
subsystem summary matrix. 

Rationale: It is important to use the consensus approach for summarizing the individual 
subsystem architecture quality assessment results. 

3. Identify primary stakeholders. 

Step: The assessment team collaborates with the system architecture team to identify the 
primary stakeholders who may 
a. attend the system architecture assessment summary meeting  
b. receive a copy of the system architecture assessment summary report 

Rationale: It is important to invite all relevant stakeholders to the meeting and provide 
them with a copy of the presentation materials and summary report so that no significant 
stakeholder is excluded. 

4. Produce, review, and distribute the architecture assessment summary report. 

Step: In the weeks leading up to the system architecture quality assessment meeting, the 
following substeps are performed: 
a. Produce the architecture assessment summary report. 

Substep: Based on the individual subsystem architecture quality assessment results 
and their summaries, selected members of the assessment team produce the system 
architecture quality assessment summary report for the system architecture quality 
assessment meeting. 
Rationale: The summary report enables is the primary deliverable of the system ar-
chitecture assessment. 

b. Perform an internal review of the architecture assessment summary report. 
Substep: The members of the assessment team perform an internal quality check on 
the system architecture quality assessment summary report. 
Rationale: It is cost-effective to identify and fix defects prior to distribution of the 
report. 

c. Perform an internal review of the architecture assessment summary report. 
Substep: The authors of the system architecture quality assessment summary report 
make any final fixes prior to initial distribution. 
Rationale: Fixing mistakes prior to the meeting enables the attendees to concentrate 
on the content of the system architecture quality assessment summary report rather 
than any defects it might contain. 

d. Distribute the architecture assessment summary report. 
Substep: The authors of the system architecture quality assessment summary report 
distribute the initial version to the meeting attendees and other stakeholders. 
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Rationale: This enables the meeting attendees to read the system architecture qual-
ity assessment summary report prior to the meeting. 

5. Produce, review, and distribute the summary presentation materials. 

Step: In the weeks leading up to the system architecture quality assessment meeting, the 
following substeps are performed: 
a. Produce summary presentation materials. 

Substep: Based on the system architecture quality assessment summary report, se-
lected members of the assessment team produce the system summary meeting pres-
entation materials for the system architecture quality assessment meeting. 
Rationale: The presentation materials enable an overview of the content of the sys-
tem architecture quality assessment summary report to be distributed and presented 
at the meeting. 

b. Perform an internal review of the summary presentation materials. 
Substep: The members of the assessment team perform an internal quality check on 
the system summary meeting presentation materials. 
Rationale: It is cost-effective to identify and fix defects prior to distribution and 
presentation of the meeting materials. 

c. Perform an internal review of the summary presentation materials. 
Substep: The authors of the system summary meeting presentation materials make 
any final fixes prior to distribution. 
Rationale: Fixing mistakes prior to the meeting enables the attendees to concentrate 
on the content of the presentation materials rather than defects. 

d. Distribute the summary presentation materials. 
Substep: The authors of the system summary meeting presentation materials dis-
tribute the final presentation materials to the meeting attendees and other stake-
holders. 
Rationale: This enables the meeting attendees to read the presentation materials 
prior to the meeting. 

6. Organize the meeting. 

Step: At least two weeks prior to the system architecture assessment summary meeting, 
the assessment team and system architecture team collaborate to complete the following 
steps: 
a. Identify meeting attendees and other stakeholders. 

Substep: The assessment and system architecture teams develop a list of meeting at-
tendees and other stakeholders who should receive copies of the system architecture 
summary report and meeting presentation materials. 
Rationale: It is important to ensure that no significant stakeholder is overlooked. 
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b. Set time and location. 
Substep: The assessment and system architecture teams determine an exact time 
and location (e.g., address, building number, and room number) for the system ar-
chitecture assessment summary meeting. 
Rationale: Attendees need exact times to avoid conflicts. 

c. Develop meeting agenda. 
Substep: The assessment team and system architecture team set up a meeting 
agenda covering introducing restatement of assessment objectives, summary of as-
sessment method, summary of quality of the architecture of the individual subsys-
tems, summary of the overall system architecture, and meeting wrap-up (e.g., status 
of action items and assignment of final new action items). 
Rationale: Agendas enable attendees to identify the most important parts of the 
meeting. 

d. Invite stakeholders. 
Substep: The assessment team sends an invitation including the meeting agenda to 
the identified meeting attendees and other stakeholders. 
Rationale: Documented invitations (e.g., email with attached agenda) are conven-
ient for invitees who can add the meeting to their schedules and read the agendas. 

Preparation Task Postconditions 
This task is successfully completed when the following postconditions are met: 

• Individual subsystem architecture assessment reports have been gathered and their re-
sults have been summarized. 

• The initial version of the system architecture quality assessment summary report has 
been produced, reviewed, and distributed to its primary stakeholders. 

• The presentation materials have been produced, reviewed, and distributed to the stake-
holders. 

• The system architecture assessment summary meeting has been organized. 

5.4.2 System Architecture Assessment Summary – Meeting 
Meeting Task Objectives 
The objectives of this task are to 

• Present the overall results of the system architecture quality assessment to its major 
stakeholders. 

• Perform a final review48 on the system architecture quality assessment process. 

Meeting Task Duration 
The duration of this task is typically half a day. 
                                                 
48 Such a review is often referred to as a “postmortem.” 
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Meeting Task Preconditions 
This task can be started when the following preconditions are met 

• Individual subsystem architecture assessment reports have been gathered and their re-
sults have been summarized. 

• The initial version of the system architecture quality assessment summary report has 
been produced, reviewed, and distributed to its primary stakeholders. 

• The presentation materials have been produced, reviewed, and distributed to the stake-
holders. 

• The system architecture assessment summary meeting has been organized. 

Meeting Task Steps 
During this task, the following steps are performed: 

1. Restate assessment objectives. 

Step: The assessment team presents a restatement of the overall system architecture 
quality assessment objectives. 

Rationale: Not all attendees at the final meeting, especially members of upper manage-
ment, will be familiar with the specific objectives of the method used to arrive at the 
overall assessment of the quality of the system’s architecture. 

2. Summarize assessment method. 

Step: The assessment team presents to the meeting attendees a brief summary of the [tai-
lored] method used to assess the quality of the system architecture.  

Rationale: Not all attendees at the final meeting, especially members of upper manage-
ment, will be familiar with the method used to arrive at the overall assessment of the 
quality of the system’s architecture. 

3. Summarize quality of subsystem architectures. 

Step: The assessment team presents an overview of the subsystem architecture quality 
assessment results (to date if this final phase is performed incrementally).  

Rationale: The subsystem architectures are the foundation on which the overall system 
architecture is built. It is useful to have a brief summary of the preceding assessments as 
they are likely to have occurred over the course of several months (or even years) and 
are not fresh in the minds of most of the meeting attendees.  

4. Present summary of the quality of the system architecture. 

Step: The assessment team presents a summary of the system architecture quality. This 
may be the quality of subsystem architectures assessed to date if this final phase is per-
formed incrementally.  

Rationale: This step presents the overall results of the QUASAR method, which is the 
primary result of the overall assessment method. 
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5. Solicit feedback. 

Step: The assessment team solicits comments concerning the assessment results, espe-
cially presentation or report contents that are factually incorrect.  

Rationale: This step enables all stakeholders to have a final chance to ensure the quality 
of the system architecture assessment report. 

6. Capture lessons learned. 

Step: The assessment team collaborates with meeting attendees to capture lessons 
learned about the effectiveness of the system architecture assessment summary phase of 
the QUASAR method. 

Rationale: This step enables the method to be continually improved and tailored for fu-
ture projects. 

Meeting Task Postconditions 
This task is successfully completed when the following postconditions are met: 

• The objectives of the system architecture quality assessment have been presented to the 
meeting attendees. 

• A summary of the system architecture quality assessment method has been presented to 
the meeting attendees. 

• The quality of each of the subsystem architectures has been presented to the meeting 
attendees. 

• The summary of the overall quality of the system architecture has been presented to the 
meeting attendees. 

• Feedback has been solicited from the meeting attendees. 

• Lessons learned about the system architecture quality assessment method have been cap-
tured. 

• The members of the assessment team have taken notes. 

5.4.3 System Architecture Assessment Summary – 
Follow-Through 

Follow-Through Task Objective 
The objective of this task is to finalize the work associated with the system architecture qual-
ity assessment. 

Follow-Through Task Duration 
Updating and distributing the final report should not take more than one or two weeks, de-
pending on the number of changes to be made resulting from feedback at the final summary 
meeting. Similarly, the amount of time taken to track action items to completion varies de-
pending on the number and types of action items. Finally, updating the assessment method’s 
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training materials and associated procedure largely depends on the number and types of les-
sons learned. 

Follow-Through Task Preconditions 
This task can be started when the following preconditions are met: 

• The objectives of the system architecture quality assessment have been presented to the 
meeting attendees. 

• A summary of the system architecture quality assessment method has been presented to 
the meeting attendees. 

• The quality of each of the subsystem architectures has been presented to the meeting 
attendees. 

• The summary of the overall quality of the system has been presented to the meeting at-
tendees. 

• Feedback has been solicited from the meeting attendees. 

• Lessons learned about the system architecture quality assessment method have been cap-
tured. 

• The members of the assessment team have taken notes. 

Follow-Through Task Steps 
After the system architecture assessment summary meeting, the following steps are per-
formed in a timely manner: 

1. Update the system architecture assessment summary report. 

Step: The assessment team makes any final updates to the system architecture assess-
ment summary report based on inputs from the system architecture assessment summary 
meeting. 

Rationale: This step produces the final version of primary deliverable of the QUASAR 
method. 

2. Distribute the system architecture assessment summary report.  

Step: The assessment team distributes the final version of the system architecture as-
sessment summary report to its stakeholders. 

Rationale: This step ensures that the stakeholders receive the results of the assessments 
and thereby realize the value of the preceding steps (i.e., obtain the return on their in-
vestment in prior effort). 

3. Manage action items. 

Step: The assessment team collaborates with the meeting attendees to collect, identify, 
and record any action items from the meeting. This includes setting due dates and as-
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signing the action items to appropriate people. The assessment team tracks all remaining 
action items to closure.  

Rationale: Unless action items are assigned and due dates are scheduled, the action 
items are unlikely to be properly handled in a timely manner and tracked to completion. 

4. Update assessment method and associated training materials. 

Step: Based on the lessons learned, the project process team49 updates the project-
tailored QUASAR procedure and the associated QUASAR training materials. Where 
appropriate, they also provide the SEI with the lessons learned and updated procedure 
and training materials so that the official QUASAR documentation can be iterated. 

Rationale: Updating the QUASAR enables the process to be improved on future system 
architecture assessment summary phases and future projects. 

Follow-Through Task Postconditions 
This task is successfully completed when the following postconditions are met: 

• The final system architecture assessment summary report has been produced and dis-
tributed to its stakeholders. 

• Action items have been tracked to completion. 

• The system architecture quality assessment procedure and associated training materials 
have been updated. 

                                                 
49 If an official “project process team” (e.g., system engineering process group [SEPG]) does not 

exist, then whichever team, group, or individual that is filling the process engineer role should 
perform this task. 
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6 QUASAR Work Products 

The purpose of the QUASAR method is to assess the quality of system architecture, not to 
produce documentation just for the sake of having it. Nevertheless, some documentation can 
be very useful for recording and conveying important information related to the assessment 
of system architectures. Where appropriate and cost-effective, the teams performing the tasks 
of the QUASAR method typically produce the following work products: 

1. System Architecture Assessment Initiation Work Products 
a. Architecture Assessment Procedure 
b. Architecture Assessment Training Materials 
c. Initial Kickoff Meeting Agenda 
d. Initial Kickoff Meeting Assessor Notes 
e. Initial Kickoff Meeting Minutes 
f. Assessment Schedule 
g. Assessment Action Item List 

2. Subsystem Requirements Review Work Products 
a. Subsystem Requirements Review Checklist 
b. Subsystem Requirements Review Preparatory Materials 
c. Subsystem Requirements Review Presentation Materials 
d. Subsystem Requirements Trace 
e. Subsystem Requirements Review Meeting Agenda 
f. Subsystem Requirements Review Meeting Assessor Notes 
g. Subsystem Requirements Review Meeting Outbrief 
h. Subsystem Requirements Review Meeting Minutes 
i. Updated Assessment Action Item List 

3. Subsystem Architecture Assessment Work Products 
a. Subsystem Architecture Assessment Checklist 
b. Subsystem Architecture Assessment Preparatory Materials 
c. Subsystem Architecture Assessment Presentation Materials 
d. Subsystem Architecture Assessment Meeting Agenda 
e. Subsystem Architecture Assessment Meeting Assessor Notes 
f. Subsystem Architecture Support Matrix 
g. Subsystem Architecture Assessment Meeting Outbrief 
h. Subsystem Architecture Assessment Report 
i. Updated Assessment Action Item List 
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4. System Architecture Assessment Summary Work Products 
a. System Summary Subsystem Matrix 
b. System Summary Meeting Presentation Materials 
c. System Architecture Assessment Summary Meeting Agenda 
d. System Architecture Assessment Summary Meeting Assessor Notes 
e. System Architecture Quality Assessment Summary Report 

6.1 System Architecture Assessment Initiation Work 
Products 

As illustrated in Figure 16, the following work products are produced for and during the sys-
tem architecture assessment initiation phase and are described in detail in the sections that 
follow: 

1. Architecture Assessment Procedure 

2. Architecture Assessment Training Materials 

3. Initial Kickoff Meeting Agenda 

4. Initial Kickoff Meeting Assessor Notes 

5. Initial Kickoff Meeting Minutes 

6. Assessment Schedule 

7. Assessment Action Item List 
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Figure 16: Initial Kickoff Meeting Work Products 

6.1.1 Architecture Assessment Procedure 
• Definition - the organizational or system-specific, tailored procedure that documents 

how to perform the architecture assessments 

• Objectives 

Document the system architecture quality assessment method, including the 
− tasks to be performed during the assessments 
− teams that will perform these tasks 
− work products to be produced by these teams 

• Stakeholders 
− Produced by the assessment team 
− Reviewed by the 

− assessment team (prior to delivery to the architecture team) 
− top-level architecture team (prior to the initial kickoff meeting) 
− requirements teams (prior to the subsystem requirements review meetings) 
− subsystem architecture teams (prior to the subsystem architecture assessment 

meetings) 
− Maintained by the assessment team 
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− Used by the 

− architecture teams to understand their responsibilities including tasks to perform 
and work products to produce 

− assessment team to understand their responsibilities including tasks to perform and 
work products to produce 

− management team to understand the resources required to implement the assess-
ment method 

− requirements teams to understand their responsibilities including tasks to perform 
and work products to produce 

• Inputs 
− default assessment procedure (i.e., this handbook) 
− attendees’ prior experience performing architecture assessments 

• Contents 
− Front Matter 
− Introduction 

− Objectives of the Assessments 
− Terms and Concepts 

− Quality Cases 
− Potentially Relevant Quality Factors 
− Quality Goals and Requirements 
− Claims 
− Arguments 
− Evidence 
− Examples 

− Tasks 
− Objectives 
− Steps 
− Preconditions and Postconditions 

− Teams and Member Roles 
− Responsibilities 
− Team composition 

− Work Products  
− Name and Definition 
− Objectives (purpose) 
− Stakeholders 
− Inputs 
− Contents 

6.1.2 Architecture Assessment Training Materials 
• Definition - the organizational or system-specific, tailored training materials for teach-

ing the architecture quality assessment method 
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• Objectives 

Enable the assessment team to train the assessment participants (e.g., new members and 
members of the development organization [members of the system and subsystem re-
quirements and architecture teams]) how to perform the assessment method. 

• Stakeholders 
− Produced by the assessment team 
− Reviewed by the 

− assessment team (prior to delivery to the architecture team) 
− top-level architecture team (prior to the initial kickoff meeting) 
− requirements teams (prior to the subsystem requirements review meetings) 
− subsystem architecture teams (prior to the subsystem architecture assessment 

meetings) 
− Maintained by the assessment team 
− Used by the 

− architecture teams to understand their responsibilities including tasks to perform 
and work products to produce 

− assessment team to understand their responsibilities including tasks to perform and 
work products to produce 

− management team to understand the resources required to implement the assess-
ment method 

− requirements teams to understand their responsibilities including tasks to perform 
and work products to produce 

• Input 
− Architecture Assessment Procedure 

• Contents 
− Introduction 

− Objectives of the Assessments 
− Terms and Concepts 

− Quality Cases 
− Potentially Relevant Quality Factors 
− Quality Goals and Requirements 
− Claims 
− Arguments 
− Evidence 
− Examples 

− Tasks  
− Objectives 
− Steps 
− Preconditions and Postconditions 

− Teams and Member Roles  
− Responsibilities 
− Team Composition 
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− Work Products  
− Name and Definition 
− Objectives (purpose) 
− Stakeholders 
− Inputs 
− Contents 

6.1.3 Initial Kickoff Meeting Agenda 
• Definition - the informal, typically one-page agenda for the initial system-wide kickoff 

meeting 

• Objective 

Inform meeting attendees of meeting topics and times. 

• Stakeholders 
− Produced by the 

− assessment team 
− system requirements team 
− system architecture team 

− Not reviewed 
− Not maintained 
− Used by the meeting attendees 

• Inputs 
− Architecture Assessment Procedure 
− discussions 

• Contents 
− Meeting Topics and Times  

− Introductions and Meeting Logistics 
− Assessment Scope 
− Assessment Schedule 
− Tailoring of Assessment Method 
− Meeting Wrap-Up 

6.1.4 Initial Kickoff Meeting Assessor Notes 
• Definition - informal notes taken by an individual assessor during a subsystem require-

ments meeting 

• Objectives 
− Capture information that the assessor considers significant. 
− Provide content for the subsystem requirements meeting outbrief and meeting min-

utes. 
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• Stakeholders 
− Produced by individual members of the assessment team who attend the subsystem 

requirements meeting 
− Not reviewed  
− Not maintained  
− Used by the scribe of the assessment team, to use as input to the subsystem require-

ments meeting outbrief and meeting minutes 

• Inputs 
− Subsystem Requirements Meeting Checklist 
− Subsystem Requirements Meeting Preparatory Materials 
− Subsystem Requirements Meeting Presentation Materials 
− Subsystem Requirements Trace 
− Answers to assessors questions 

• Contents 
− Informal Notes Capturing Observations or Key Findings 

− requirements driving the subsystem architecture 
− architects’ representative partial quality cases 

− Recommendations for Improvement 
− requirements driving the subsystem architecture 
− architects’ representative partial quality cases 
− architecture assessment method 

− Questions Asked and Answers Given 
− Other information that the individual assessor considered significant and worthy of 

note 

6.1.5 Initial Kickoff Meeting Minutes 
• Definition - the official record of the proceedings of the initial kickoff meeting 

• Objective 

Record the major occurrences and decisions made during the initial kickoff meeting. 

• Stakeholders 
− Produced by the assessment team 
− Reviewed by the meeting attendees (prior to publication) 
− Maintained by the assessment team (factual corrections only) 
− Used by the 

− architecture teams to understand consensus reached and agreements made 
− assessment team to understand consensus reached and agreements made 
− management team to understand required resources 
− requirements teams to understand consensus reached and agreements made 

• Input 
− notes and comments from meeting attendees 
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• Contents 
− Meeting Date and Location 
− Invitees 

− Members of the Assessment Team 
− Members of the Top-Level Architecture Team 

− Scope of the Assessments 
− Subsystems to be Assessed 
− Prioritized List of Architecturally Significant Requirements (e.g., quality factors)  
− Assessment Resources (e.g., personnel and time) 

− Assessment-Specific Tailoring of the Assessment Method  
− Assessment Schedule (by reference – see Section 6.1.6) 
− Action Items (by reference – see Section 6.1.7) 

6.1.6 Assessment Schedule 
• Definition - the schedule that documents the tentative dates of the assessment meetings 

for the individual assessments and subsequent roll-up meetings 

• Objectives 
− Enable scheduling of preparatory work (e.g., development of architecturally signifi-

cant requirements, architecture documentation, and quality cases including claims, 
arguments, and evidence).  

− Enable scheduling of resources (e.g., personnel and meeting rooms). 
− Help avoid schedule conflicts (e.g., with major programmatic reviews and other de-

velopment work). 

• Stakeholders 
− Produced by the 

− assessment team 
− top-level architecture team 

− Reviewed by the 
− Architecture team (prior to publication) 
− Assessment team (prior to publication) 
− Management team (prior to publication) 

− Maintained by the assessment team (factual corrections only) 
− Used by the 

− architecture teams to understand schedule commitments 
− assessment team to understand schedule commitments 
− requirements teams to understand schedule commitments 
− management teams to understand schedule commitments 

• Input 
− Initial Kickoff Meeting Minutes 
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• Contents 
− Agreed-Upon Dates of Initial Meetings 
− Tentative Dates for the Remaining Meetings 

6.1.7 Assessment Action Item List 
• Definition - a list of actions to be taken resulting from the meeting  

• Objective 

Ensure that actions identified during the meeting are assigned and tracked to completion. 

• Stakeholders 
− Produced by the assessment team 
− Reviewed by the meeting attendees 
− Maintained by the assessment team 
− Used by the attendees to keep track of assigned actions 

• Input 
− Initial Kickoff Meeting Minutes 

• Contents 
− Action Items  

− Unique Identifier 
− Action to be Taken 
− Person Assigned Action 
− Due Date 
− Status 

6.2 Subsystem Requirements Meeting Work 
Products 

As illustrated in Figure 17, the following work products are produced for and during the indi-
vidual subsystem requirements meetings: 

1. Subsystem Requirements Review Checklist 

2. Subsystem Requirements Review Preparatory Materials 

3. Subsystem Requirements Review Presentation Materials 

4. Subsystem Requirements Trace 

5. Subsystem Requirements Review Meeting Agenda 

6. Subsystem Requirements Review Meeting Assessor Notes 

7. Subsystem Requirements Review Meeting Outbrief 

8. Subsystem Requirements Review Meeting Minutes 

9. Action Item List (updated and maintained – see Section 6.1.7) 
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Figure 17: Subsystem Requirements Meeting Work Products 

6.2.1 Subsystem Requirements Review Checklist 
• Definition - a checklist that is used by the assessment team during the subsystem re-

quirements meetings to help them identify defects in the requirements 

• Objectives 
− Help the subsystem requirements team improve the engineering of the derived archi-

tecturally significant requirements allocated to the subsystem. 
− Help the subsystem architecture team better prepare for the subsystem architecture 

assessment meeting. 
− Help the assessment team identify defects associated with the architecturally signifi-

cant requirements that have been allocated to the subsystem. 
− Help the assessment team identify defects associated with the subsystem architecture 

team’s quality cases. 
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• Stakeholders 
− Produced by the assessment team 
− Reviewed by the 

− subsystem architecture team 
− subsystem requirements team 

− Maintained by the assessment team 
− Used by the 

− assessment team to identify defects associated with the architecturally significant 
requirements and the subsystem architecture team’s representative samples of draft 
quality cases  

− subsystem architecture team to understand what is expected of them during the 
relevant subsystem requirements meeting and subsystem architecture assessment 
meeting  

− subsystem requirements team to understand what is expected of them during the 
subsystem requirements meeting 

• Inputs 
− Architecture Assessment Method (tailored) 
− Default Subsystem Requirements Meeting Checklist (e.g., example in Appendix D in 

this handbook) 
− Initial Kickoff Meeting Minutes 

• Contents 
− Requirements Questions 

− questions related to potential completeness defects associated with requirements 
driving the subsystem architecture 

− questions related to potential quality (ambiguity, feasibility, etc.) defects associated 
with requirements driving the subsystem architecture 

− Questions About Quality Cases 
− questions related to potential defects associated with claims 
− questions related to potential defects associated with arguments 
− questions related to potential defects associated with evidence 

6.2.2 Subsystem Requirements Review Preparatory  
Materials 

• Definition - materials provided to the assessment team prior to a subsystem require-
ments meeting  

• Objectives 
− Enable the assessment team to properly prepare for the associated subsystem re-

quirements meeting. 
− Enable the assessment team members to be more effective during the subsystem re-

quirements meeting. 
− Decrease the time needed for the actual subsystem requirements meeting. 
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• Stakeholders 
− Produced by the 

− subsystem requirements team 
− subsystem architecture team 

− Reviewed by the 
− various teams, depending on the materials (requirements specifications, require-

ments repository, requirements traces, etc.) 
− top-level architecture team 

− Maintained by the 
− subsystem requirements team 
− subsystem architecture team 

− Used by the assessment team to become familiar with the content, quality, and status 
of the requirements that will significantly influence the subsystem architecture 

• Input 
− varies depending on the materials 

• Contents 
− Requirements-Related Information  

− requirements specifications with architecturally significant requirements identified 
(e.g., highlighted or indexed) 

− information providing read-only access to the requirements repositories 
− requirements traces with architecturally significant requirements highlighted or re-

stricted to architecturally significant requirements (see below) 
− any questions that the subsystem requirements team might have regarding the 

pending subsystem requirements meeting 
− Architecture-Related Information 

− representative samples of incomplete draft quality cases 
− any questions that the subsystem architecture team might have regarding the future 

subsystem architecture assessment meeting 

6.2.3 Subsystem Requirements Review Presentation  
Materials 

• Definition - presentation materials that are presented to the assessment team during the 
subsystem requirements meeting 

• Objectives 
− Communicate the architecturally significant requirements to the assessment team. 
− Communicate the subsystem architects’ understanding of their responsibilities asso-

ciated with the associated subsystem architecture assessment meeting. 

• Stakeholders 
− Produced by the 

− subsystem requirements team 
− subsystem architecture team 
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− Reviewed by the top-level architecture team 
− Maintained by the 

− subsystem requirements team 
− subsystem architecture team 

− Used by the assessment team to understand the requirements relevant to the subsystem 
architecture and the subsystem architect’s understanding of their responsibilities asso-
ciated with the associated subsystem architecture assessment meeting 

• Inputs 
− Architecture Assessment Procedure 
− Initial Kickoff Meeting Minutes 
− Subsystem Requirements 
− Subsystem Requirements Meeting Preparatory Materials 
− feedback from the assessment team 

• Contents 
− Requirements-Related Information 

− summary of the subsystem requirements relevant to the subsystem architecture 
− summary of the requirements traces with only the architecturally significant re-

quirements or with the architecturally significant requirements highlighted (see 
Section 6.2.4) 

− remaining questions that the subsystem requirements team might have regarding 
the pending subsystem requirements meeting 

− Architecture-Related Information 
− representative, partial samples of architecture quality cases  
− remaining questions that the subsystem architecture team might have regarding the 

pending subsystem architecture assessment meeting 

6.2.4 Subsystem Requirements Trace 
• Definition - documentation tracing derived and allocated requirements that are relevant 

to the subsystem architecture back to their sources (e.g., contract requirements or re-
quirements at the next higher tier in the architecture)  

• Objectives 
− Ensure that all requirements that drive the subsystem architecture have been identi-

fied, derived, and allocated to the subsystem architecture. 
− Ensure that the requirements are of sufficient quality to enable the subsystem archi-

tects to properly develop the subsystem architecture. 

• Stakeholders 
− Produced by the subsystem requirements team 
− Review varies depending on the requirements engineering method 
− Maintenance varies depending on the requirements engineering method 
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− Used by the 
− assessment team to understand the requirements driving the subsystem architecture 

so that they can assess the subsystem architecture against these requirements 
− subsystem architecture team to drive the development of the subsystem architec-

ture 

• Input 
− varies depending on the requirements engineering method 

• Contents 
− Mapping of requirements relevant to the subsystem architecture back to their sources 

(e.g., contract requirements or requirements at the next higher tier in the architec-
ture)50 

6.2.5 Subsystem Requirements Review Meeting Agenda 
• Definition - the informal, typically one-page agenda for a single subsystem require-

ments review meeting 

• Objective 

Inform meeting attendees of meeting topics and associated times. 

• Stakeholders 
− Produced by the 

− assessment team 
− subsystem requirements team 
− subsystem architecture team 

− Not reviewed 
− Not maintained  
− Used by the meeting attendees 

• Inputs 
− Architecture Assessment Procedure 
− discussions 

                                                 
50 Depending on the availability of requirements management tools, this requirements trace may 

include all requirements allocated to the subsystem or only those requirements that drive the archi-
tecture of the subsystem. 
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• Contents 
− Meeting Topics and Times 

− Introductions and Meeting Logistics 
− Quality Factors 
− Quality Requirements 
− Sample Quality Cases 
− Special Assessment Staffing Needs 
− Schedule of Coming Events 
− Meeting Wrap-Up 

6.2.6 Subsystem Requirements Review Meeting Assessor 
Notes 

• Definition - informal notes taken by an individual assessor during a subsystem require-
ments meeting 

• Objectives 
− Capture information that the assessor considers significant. 
− Provide content for the subsystem requirements meeting outbrief and meeting min-

utes. 

• Stakeholders 
− Produced by individual members of the assessment team who attend the subsystem 

requirements meeting 
− Not reviewed  
− Not maintained  
− Used by the scribe of the assessment team, to use as input to the subsystem require-

ments meeting outbrief and meeting minutes 

• Inputs 
− Subsystem Requirements Meeting Checklist 
− Subsystem Requirements Meeting Preparatory Materials 
− Subsystem Requirements Meeting Presentation Materials 
− Subsystem Requirements Trace 
− Answers to assessors’ questions 

• Contents 
− Informal Notes Capturing Observations or Key Findings 

− requirements driving the subsystem architecture 
− architects’ representative partial quality cases 

− Recommendations for Improvement 
− requirements driving the subsystem architecture 
− architects’ representative partial quality cases 
− architecture assessment method 
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− Questions Asked and Answers Given 
− other information that the individual assessor considered significant and worthy of 

note 

6.2.7 Subsystem Requirements Review Meeting Outbrief 
• Definition - an interim top-level summary of the results of a subsystem requirements 

meeting 

• Objectives 
− Communicate a summary of the assessment team’s interim results from the subsys-

tem requirements meeting. 
− Elicit comments and recommendations from the subsystem architecture and subsys-

tem requirements teams, especially to correct any factual misunderstandings before 
they are incorporated into the meeting’s minutes. 

• Stakeholders 
− Produced by the assessment team 
− Reviewed by the 

− assessment team (internally before it is sent to the subsystem architecture and re-
quirements teams) 

− subsystem architecture team 
− subsystem requirements team 

− Maintained by 
− Temporary document that is not maintained, but rather superseded by the subsys-

tem requirements meeting minutes 
− Used by the 

− assessment team to communicate their interim results to the subsystem architecture 
team and requirements team 

− subsystem architecture team to understand the assessment team’s interim observa-
tions, findings, and recommendations related to the architecture team’s presenta-
tion 

− subsystem architecture team to understand the assessment team’s interim observa-
tions, findings, and recommendations related to the requirements team’s presenta-
tion 

• Inputs 
− Subsystem Requirements Meeting Checklist 
− Subsystem Requirements Meeting Preparatory Materials 
− Subsystem Requirements Meeting Presentation Materials 
− Subsystem Requirements Trace 
− System Requirements Meeting Assessor Notes 

• Contents 
− Summary of Significant Observations and Findings 

− requirements driving the subsystem architecture 
− representative quality cases (e.g., claims, arguments, evidence) 

124  CMU/SEI-2006-HB-001 



 

− Recommendations (e.g., for better engineering the architecture-significant subsystem 
requirements, for producing better architecture quality cases, or for improv-
ing/tailoring the system architecture assessment method) 

− Requests for Further Information 

6.2.8 Subsystem Requirements Review Meeting Minutes 
• Definition - the official record of the proceedings of an individual subsystem require-

ments meeting 

• Objectives 
− Record the significant observations and findings made during the subsystem re-

quirements meeting about 
− requirements that drive the subsystem architecture 
− representative partial samples of architects’ cases (e.g., claims, arguments, evi-

dence) presented during the meeting 
− Record any significant recommendations such as recommendations for 

− better engineering the architecture-significant subsystem requirements 
− producing better architecture quality cases 
− improving/tailoring the system architecture assessment method 

• Stakeholders 
− Produced by the assessment team 
− Reviewed by the meeting attendees (prior to official publication) 
− Maintained by the assessment team (factual corrections only) 
− Used by the 

− assessment team to document their findings and recommendations and to act as an 
input for updating/tailoring the architecture assessment procedure and subsystem 
requirements checklist 

− management team to understand the status and quality of the requirements that 
drive the architecture 

− subsystem architecture team to understand assessment team’s observations and 
recommendations 

− subsystem requirements team to help improve the quality of their requirements that 
drive the subsystem architecture 

− top-level architecture team to help them understand the status of the requirements 
driving the subsystem architecture and the ability of the subsystem architecture 
team to defend the quality of their architecture during the subsystem architecture 
assessment meeting 
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• Inputs 
− Subsystem Requirements Meeting Checklist 
− Subsystem Requirements Meeting Preparatory Materials 
− Subsystem Requirements Meeting Presentation Materials 
− Subsystem Requirements Trace 
− System Requirements Meeting Assessor Notes 
− Subsystem Requirements Meeting Outbrief 

• Contents 
− Meeting Date and Location 
− Attendees 

− members of the assessment team 
− members of the subsystem architecture team 
− members of the subsystem architecture team 

− Subsystem Requirements 
− significant observations 
− subsystem architecture quality cases 
− significant observations 

− Recommendations for Improvement 
− requirements 
− architecture quality cases 
− architecture assessment method 

− Action Items (by reference – see Section 6.1.7) 

6.3 Subsystem Architecture Assessment Work 
Products 

As illustrated in Figure 18, the following work products are produced for or during the indi-
vidual subsystem architecture assessment meetings: 

1. Subsystem Architecture Assessment Checklist 

2. Subsystem Architecture Assessment Preparatory Materials 

3. Subsystem Architecture Assessment Meeting Agenda 

4. Subsystem Architecture Assessment Presentation Materials 

5. Subsystem Architecture Assessment Assessor Notes 

6. Subsystem Architecture Support Matrix 

7. Subsystem Architecture Assessment Meeting Outbrief 

8. Subsystem Architecture Assessment Meeting Report 

126  CMU/SEI-2006-HB-001 



 

Assessment
Team

Subsystem 
Architecture 

Team

Subsystem Architecture Assessment Meeting
Preparatory Materials

Discussion during Subsystem Architecture Assessment 
Meeting

Top-Level
Architecture 

Team

Management 
Team

Subsystem Architecture Assessment Meeting
Presentation Materials

Any additional requested information

Discussion

Any additional 
requested information

Subsystem Architecture Assessment Meeting Outbrief

Draft Subsystem Architecture Assessment Meeting Minutes 
And Draft Action Item List

Comments and Recommendations Comments and 
Recommendations

Subsystem 
Architecture 

Assessment Meeting 
Minutes and Action 

Item List

Subsystem Architecture Assessment Meeting Minutes 
And Action Item List

Updates
Updates

Update Action Item List Updated Action
Item Listre

pe
at

Subsystem Architecture Assessment Meeting Checklist

Subsystem 
Architecture 
Assessment

Meeting Checklist

Subsystem 
Architecture 

Assessment Meeting 
Minutes and Action 

Item List

 

Figure 18: Subsystem Architecture Assessment Work Product Flow 

The subsystem architecture assessment meeting work products possess the relationships de-
picted in Figure 19. 
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Figure 19: Subsystem Architecture Assessment Work Product Relationships 

6.3.1 Subsystem Architecture Assessment Checklist 
• Definition - a checklist used by the assessment team during the subsystem architecture 

assessment meetings to help them identify defects  

• Objectives 
− Help the subsystem architecture team better prepare for the subsystem architecture 

assessment meeting. 
− Help the assessment team identify defects associated with the subsystem architecture 

team’s quality cases. 

• Stakeholders 
− Produced by the assessment team 
− Reviewed by the subsystem architecture team 
− Maintained by the assessment team 
− Used by the 

− assessment team to identify defects associated with the subsystem architecture 
team’s quality cases  

− subsystem architecture team to understand what is expected of them during the 
relevant subsystem architecture assessment meeting  
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• Inputs 
− Architecture Assessment Method (tailored) 
− Default Subsystem Architecture Assessment Meeting Checklist (example in Appen-

dix D of this handbook) 
− Initial Kickoff Meeting Minutes 

• Contents 
− questions related to potential defects associated with the subsystem architecture over-

view 
− questions related to potential defects associated with the quality cases (e.g., claims, 

arguments, evidence) 

6.3.2 Subsystem Architecture Assessment Preparatory 
Materials 

• Definition - preparatory materials that the architects provide to the assessment team be-
fore a subsystem architecture assessment meeting, allowing plenty of time for review 

• Objectives 
− Enable the assessment team to properly prepare for the assessment meeting. 
− Maximize the effectiveness and efficiency of the assessment meeting. 

• Stakeholders 
− Produced by the subsystem architecture team 
− Reviewed by the 

− architecture team (prior to delivery to the assessment team) 
− assessment team (prior to the assessment meeting) 

− Maintained by the subsystem architecture team 
− Used by the assessment team to properly prepare for participation in the subsystem 

architecture assessment meeting 

• Inputs 
− architectural diagrams, models, and documentation 
− architects’ knowledge of the architecture 

• Contents 
− a brief overview of the subsystem’s architecture (e.g., training materials) 
− any significant updates to the architecturally significant requirements since the re-

quirements meeting 
− quality cases (by quality factor): 

− architects’ claims (quality goals and requirements) 
− architects’ arguments (architectural decisions and rationales) 
− evidence in the form of official architecture diagrams, models, or documents 

showing the architecture’s support for its associated architecturally significant re-
quirements (either with relevant parts highlighted or an index identifying relevant 
parts) 
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6.3.3 Subsystem Architecture Assessment Presentation 
Materials 

• Definition - presentation materials that the architects present during the subsystem ar-
chitecture assessment meeting 

• Objectives 
− Communicate the architect’s case that their architecture adequately fulfills the de-

rived and allocated architecturally significant requirements. 
− Enable the assessment team to assess the architecture against its architecturally sig-

nificant requirements. 

• Stakeholders 
− Produced by the subsystem architecture team 
− Reviewed by the top-level architecture team (prior to presentation) 
− Maintained by the subsystem architecture team 
− Used by the 

− assessment team to understand the subsystem architecture and the architecture 
team’s quality cases 

− subsystem architecture team to make their quality cases that their subsystem archi-
tecture sufficiently supports its derived and allocated architecturally significant re-
quirements 

• Inputs 
− architectural diagrams, models, and documentation 
− architects’ knowledge of the architecture 
− subsystem architecture assessment meeting preparatory material (e.g., evidence) 

• Contents 
− brief overview of the subsystem’s architecture 
− for each type of architecturally significant requirement (typically, quality attribute) 

− claims that the subsystem architecture adequately supports its derived and allo-
cated architecturally significant requirements 

− clear and compelling arguments justifying these claims in terms of the architec-
tural decisions made and their rationales 

− summaries and typical examples of the evidence supporting these arguments 
− Answers to questions posed by members of the assessment team 

6.3.4 Subsystem Architecture Assessment Meeting Agenda 
• Definition - the informal agenda for a single subsystem architecture assessment meeting 

• Objective 
Inform meeting attendees of meeting topics and associated times. 
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• Stakeholders 
− Produced by the 

− assessment team 
− subsystem architecture team 

− Not reviewed 
− Not maintained 
− Used by meeting attendees 

• Inputs 
− Architecture Assessment Procedure 
− discussions 

• Contents 
− Meeting Topics and Times including 

− Introductions and Meeting Logistics 
− Quality Factors 
− Quality Cases (by quality factor), including discussions and questions 
− Schedule of Coming Events 
− Meeting Wrap-Up 

6.3.5 Subsystem Architecture Assessment Meeting Assessor 
Notes 

• Definition - informal notes that an individual assessor takes during the subsystem archi-
tecture assessment meeting 

• Objectives 
− Capture key findings. 
− Capture significant observations. 
− Capture recommendations. 
− Capture personal action items. 

• Stakeholders 
− Produced by individual members of the assessment team who attend the subsystem 

architecture assessment meeting 
− Not reviewed 
− Not maintained 
− Used by the scribe of the assessment team, to use as input to the subsystem architec-

ture assessment meeting outbrief and meeting minutes 

• Inputs 
− Subsystem Architecture Assessment Meeting Checklist 
− Subsystem Architecture Assessment Meeting Preparatory Materials 
− Subsystem Architecture Assessment Meeting Presentation Materials 
− architects’ answers to questions asked by members of the assessment team 
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• Contents 
− For each type of architecturally significant requirement (typically quality attribute), 

informal notes capturing any observations or key findings 
− Recommendations regarding improving the 

− architects’ quality cases 
− architecture assessment method 

− questions asked and answers given 
− any other information that the individual assessors consider significant and worthy of 

writing down 

6.3.6 Subsystem Architecture Support Matrix 
• Definition – a matrix that documents the architecture’s level of support for the different 

types of architecturally significant requirements in terms of its subsystems’ support 

The subsystem support matrix is developed after the architects have presented their 
cases as part of the preparation for producing the subsystem architecture assessment 
meeting outbrief and report. 

• Objective 

Communicate the assessment that each subsystem received for its support for each type 
of architecturally significant requirement. 

• Stakeholders 
− Produced by the assessment team (typically the team leader) 
− Reviewed by the assessment team 
− Maintained by the assessment team 
− Used by assessment team, to summarize the results of the assessment of the subsys-

tem architecture 

• Inputs 
− Subsystem Architecture Assessment Meeting Preparatory Materials 
− Subsystem Architecture Assessment Meeting Presentation Materials 
− architects’ answers to questions asked by members of the assessment team 
− Subsystem Architecture Assessment Meeting Assessor Notes 

• Contents 
− Rows representing sub-subsystems 
− Columns representing types of architecturally significant requirements (typically 

quality factors) 
− Cells containing color-coded assessment ratings 

− Green – Architecture adequately supports achievement of all requirements. 
The architecture team has presented clear and convincing arguments backed up by 
sufficient underlying evidence to persuade the assessment team that the architec-
ture adequately supports the systems’ achievement of all of its allocated and de-
rived quality requirements. 
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− Yellow – Architecture may or may not adequately support achievement of all re-
quirements. 
The architecture team has either not presented adequate arguments or not provided 
adequate underlying evidence to completely persuade the assessment team that the 
architecture adequately supports the systems’ achievement of all of its allocated 
and derived quality requirements.  

− Orange – Architecture does not adequately support achievement of all require-
ments. 
The architecture team has not presented enough clear and convincing arguments 
backed up by sufficient underlying evidence to persuade the assessment team that 
the architecture adequately supports the systems’ achievement of all of its allo-
cated and derived quality requirements 

− Red – Architecture makes it difficult but not impossible to achieve some require-
ments. 
The architecture team has presented some arguments or provided some evidence to 
convince the assessment team that the architecture makes if difficult (but not im-
possible) for the system to achieve all of its allocated and derived quality require-
ments. 

− Black – Architecture prevents achievement of some requirements. 
The architecture team has presented some arguments or provided some evidence 
that has given the assessment team significant reasons to believe that certain as-
pects of the architecture will prevent the system from achieving some of its allo-
cated and derived quality requirements. 

− N/A – The associated type of architecturally significant requirements is not appli-
cable to the associated sub-subsystem. 

− TBD – Indicates that the sub-subsystem’s architecture is not ready for assessment.  
 

Assessments Capacity Interoperability Performance Reliability Safety 

Subsystem 1 Green Green Green Yellow Green 

Subsystem 2 Green Yellow Red Green Green 

Subsystem 3 Green N/A Yellow Green Yellow 

Subsystem 4 TBD TBD TBD TBD TBD 

… … … … … … 

Subsystem N Green Green Orange Green Green 

Table 1: Example Subsystem Support Matrix 

6.3.7 Subsystem Assessment Meeting Outbrief 
• Definition - an interim top-level summary of the results of a subsystem architecture as-

sessment meeting 
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• Objectives 
− Communicate a summary of the assessment team’s interim results from the subsys-

tem architecture assessment meeting. 
− Elicit comments and recommendations from the subsystem architecture team, espe-

cially to correct any factual misunderstandings before they are incorporated into the 
meeting’s minutes. 

• Stakeholders 
− Produced by the assessment team 
− Reviewed by the assessment team (internally before the draft is sent to the subsystem 

architecture team) 
− Temporary document that is not maintained, but rather superseded by the subsystem 

architecture assessment meeting report 
− Used by the 

− assessment team to communicate their interim results to the subsystem architecture 
team 

− subsystem architecture team to understand the assessment team’s interim observa-
tions, findings, and recommendations related to the architecture team’s presenta-
tion 

• Inputs 
− Subsystem Architecture Assessment Meeting Preparatory Materials 
− Subsystem Architecture Assessment Meeting Presentation Materials 
− Subsystem Architecture Assessment Meeting Assessor Notes 
− Subsystem Architecture Support Matrix 
− architects’ answers to questions asked by members of the assessment team 

• Contents 
− Assessment grades for the subsystem architecture 

− grade for overall subsystem architecture support for derived architecturally signifi-
cant types of requirements allocated to it 

− grades for each sub-subsystem for each type of architecturally significant require-
ments (subsystem support matrix) 

− Key Findings of the Subsystem Architecture Assessment 
− Key Recommendations regarding improving the 

− architects’ quality cases 
− architecture assessment method 

6.3.8 Subsystem Architecture Assessment Meeting Report 
• Definition - a report that documents the results of the subsystem architecture assessment 

meeting 

This report is developed and distributed to its stakeholders within two to four weeks af-
ter the assessment meeting. 
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• Objectives 
− Document the degree to which the subsystem architecture being assessed supports 

the derived architecturally significant requirements allocated to it. 
− Communicate this information and other results of the subsystem architecture as-

sessment meeting to all stakeholders. 

• Stakeholders 
− Produced by the assessment team (primarily a small subteam including the scribe) 
− Reviewed by the assessment team (internally before the draft is sent to the subsystem 

architecture team) 
− Maintained by the assessment team (primarily for correction of factual errors) 
− Used by the 

− assessment team to communicate their final results to the subsystem architecture 
team and to update the architecture assessment procedure 

− subsystem architecture team to understand the assessment team’s key findings, 
general observations, and recommendations related to the subsystem architecture 

• Inputs 
− Subsystem Architecture Assessment Meeting Preparatory Materials 
− Subsystem Architecture Assessment Meeting Presentation Materials 
− Subsystem Architecture Assessment Meeting Assessor Notes 
− Subsystem Architecture Support Matrix 
− Subsystem Architecture Assessment Meeting Outbrief 
− architects’ answers to questions asked by members of the assessment team 

• Contents 
− Executive Overview, which is a top-level summary of the results of the subsystem 

architecture assessment 
− Introduction, which is an overview of the subsystem architecture assessment: 

− Assessment Objectives 
− Assessment Scope 
− Assessment Participants 

− Key Findings 
− Major Recommendations 
− Lessons Learned (concerning the assessment method) 
− Appendices: Acronym List 

6.4 System Architecture Quality Assessment 
Summary Work Products 

The following work products are produced for or during the system architecture quality as-
sessment summary meeting: 

1. System Summary Subsystem Matrix 

2. System Summary Meeting Presentation Materials 
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3. System Architecture Assessment Summary Meeting Agenda 

4. System Architecture Assessment Summary Meeting Assessor Notes 

5. System Architecture Quality Assessment Summary Report 

6.4.1 System Summary Subsystem Matrix 
• Definition - the matrix that summarizes the results of all of the subsystem assessments 

• Objective 

Provide a concise overview of the assessment results. 

• Stakeholders 
− Produced by the assessment team 
− Reviewed by the assessment team 
− Maintained by the assessment team (primarily for correction of factual errors) 
− Used by the 

− assessment team to provide input to the system summary meeting presentation ma-
terial and the system architecture quality assessment summary report 

− management team to get subsystem-specific architecture quality information to 
identify architectural risks and to determine where to allocate resources 

− top-level architecture team to get subsystem-specific architecture quality informa-
tion to identify architectural risks and to determine where to allocate resources 

• Inputs 
− Subsystem Architecture Assessment Reports 
− Subsystem Architecture Support Matrices 

• Contents 
− Collection of Subsystem Architecture Support Matrices 

6.4.2 System Summary Meeting Presentation Materials 
• Definition - the preparatory materials for the summary system architecture assessment 

meeting 

• Objective 
Allow invitees of the summary system architecture assessment meeting to prepare for 
the meeting by seeing an initial version of the materials to be presented during the meet-
ing. 

• Stakeholders 
− Produced by the assessment team 
− Reviewed by the architecture team (prior to delivery to the meeting attendees) 
− Maintained by the assessment team (primarily for correction of factual errors) 
− Used by the 

− assessment team to provide input to the system summary meeting presentation ma-
terial and the system architecture quality assessment summary report 
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− management team to get subsystem-specific architecture quality information to 
identify architectural risks and to determine where to allocate resources 

− top-level architecture team to get subsystem-specific architecture quality informa-
tion to identify architectural risks and to determine where to allocate resources 

• Inputs 
− Subsystem Architecture Assessment Reports 
− Subsystem Architecture Support Matrices 
− System Summary Subsystem Matrix 

• Contents 
− Restatement of Assessment Objectives 
− Summary of Assessment Method including approaches used to summarize the quali-

ties of the subsystem architectures 
− Summary of the Quality of the Architectures of the Subsystems 
− Summary of the Quality of the System Architecture 
− Initial Lessons Learned  

6.4.3 System Architecture Assessment Summary Meeting 
Agenda 

• Definition - the informal agenda for the summary system architecture assessment meet-
ing 

• Objective 

Inform meeting attendees of meeting topics and associated times. 

• Stakeholders 
− Produced by the assessment team 
− Not reviewed 
− Not maintained 
− Used by the meeting attendees 

• Inputs 
− Architecture Assessment Procedure 
− discussions 

• Contents 
− Meeting Topics and Times including 

− Statement of Assessment Objectives 
− Overview of Assessment Method 
− Summary of the Quality of the System Architecture in terms of the quality of the 

architectures of the subsystems 
− Final Lessons Learned  
− Meeting Wrap-Up 
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6.4.4 System Architecture Assessment Summary Meeting 
Assessor Notes 

• Definition – informal notes that an individual assessor takes during summary system 
architecture assessment meeting 

• Objectives 
− Capture observations and recommendations made by the meeting attendees for im-

proving the 
− final System Architecture Quality Assessment Summary Report 
− architecture assessment procedure 
− architecture assessment training materials 
− account of personal action items 

• Stakeholders 
− Produced by individual members of the assessment team that attend the system archi-

tecture assessment summary meeting 
− Not reviewed 
− Not maintained 
− Used by the scribe of the assessment team as input to the final System Architecture 

Quality Assessment Summary Report 

• Inputs 
− observations and recommendations made by the meeting attendees 

• Contents 
− Observations and Recommendations for improving the 

− System Architecture Quality Assessment Summary Report 
− Architecture Assessment Procedure 
− Architecture Assessment Training Materials 

− Any other information that the individual assessor considered significant and worthy 
of writing down 

6.4.5 System Architecture Quality Assessment Summary 
Report 

• Definition – the report that documents the overall quality of the system architecture 

• Objectives 
− Document the quality of the system architecture in terms of the quality of the archi-

tectures of its subsystems. 
− Summarize the 

− assessment objectives 
− system architecture quality assessment method used 
− assessment lessons learned 

− Produced by the assessment team 
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− Reviewed by the 
− architecture team (prior to delivery to the assessment team) 
− assessment team (prior to the assessment meeting) 

• Inputs 
− Subsystem Architecture Assessment Reports 
− Subsystem Architecture Support Matrices 
− System Summary Subsystem Matrix 
− System Summary Presentation Materials 
− Discussions and inputs from the assessment team and stakeholders including the sys-

tem and subsystem requirements and architecture teams 

• Contents 
− Statement of Assessment Objectives 
− Overview of Assessment Method 
− Summary of the Quality of the System Architecture in terms of the quality of the ar-

chitectures of the subsystems 
− Final Lessons Learned  
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7 QUASAR Lessons Learned 

During the development and initial use of the successive versions of this system architecture 
quality assessment method, the lessons documented in this section were learned and have 
been incorporated into the current version of the method. 

7.1 System Architecture Assessment Initiation 
Phase 

The following lessons are related to the System Architecture Assessment Initiation Phase of 
the QUASAR method: 

1. Ensure adequate assessment team membership. 

Lesson: If practical, ensure that the assessment team includes at least one member who 
is familiar with the QUASAR method and quality cases. Also ensure that the assessment 
team includes one or more members who are familiar with the domain of the system (or 
subsystems) being assessed. Finally, ensure that the assessment team includes one or 
more members who are familiar with the system and if possible, its architecture. 

Rationale: 
a. Independent architecture quality assessments are relatively new. 
b. It is difficult to successfully implement an assessment method without access to at 

least one person with prior experience. 
c. Much of a system’s architecture is greatly impacted by the type of system being ar-

chitected. For example, there is a great difference between hard real-time, safety-
critical embedded systems and Web-based financial systems. 

d. Having at least one member who is familiar with the system and its architecture 
makes it easier to determine what information to ask for if the architects are unclear 
as to what makes good evidence. 

2. Provide architecture assessment training early. 

Lesson: The assessment team should provide an initial training session for members of 
both the assessment team(s) and the top-level architecture team on the objectives, 
ground rules, and method (e.g., tasks, techniques, and work products) for performing the 
architecture quality assessment. This training should be of short duration. The timing of 
this training should be appropriate. The training should concentrate on the generalization 
of safety case concepts as applied to system architecture quality assessment: the archi-
tects’ claims that their architecture has sufficient quality, their clear and compelling ar-
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guments supporting these claims, and legitimate evidence justifying belief in these ar-
guments. 

Rationale: 
a. The assessment method will probably be new to the architects and most members 

of the assessment team. 
b. The training helps ensure that the members of these teams will 

− understand their responsibilities and how to perform their tasks 
− know what information is basic information, what information is legitimate and 

appropriate as evidence supporting the architects’ arguments, and how to differ-
entiate the two 

− make fewer mistakes when applying the method 
− be more efficient in achieving the goals of the assessments 

c. The top-level architecture team typically represents all of the lower architecture 
teams during 
− tailoring of the method for use on a series of assessments 
− accepting of (i.e., committing to fulfill) their responsibilities under the assess-

ment method 

3. Provide early architecture development process training. 

Lesson: The top-level architecture team should provide an initial training session on the 
architecture development and maintenance process including the following: 
a. architecting tasks, techniques, and conventions (standards, procedures, guidelines) 
b. architecture roles and responsibilities  
c. architecture work products including types (e.g., models, views, documents), pur-

poses, conventions, etc. 
d. The architects should clearly show how the architecture will evolve in an incre-

mental development cycle and how the architecture varies across variants within a 
product line. This should include how they identify increments and variants within 
requirements repositories, requirements and architecture models, and requirements 
and architecture documents. This is difficult to do with today’s immature tools. 

Rationale: 
a. This training is quite valuable to members of the assessment team in terms of set-

ting their expectations. 
b. This training helps members of the assessment team determine if the set of the ar-

chitects’ work products (especially views) is both adequately complete and also ap-
propriate (e.g., not confusing requirements models such as mistaking use case mod-
els for architecture models). 

c. If performed sufficiently early in the development cycle, providing this training can 
influence the 
− requirements engineers’ method, thereby enabling them to properly engineer the 

architecturally significant requirements that drive the architecture 
− architects’ method for developing the architecture, thereby enabling them to 

o produce the arguments and evidence needed for the assessment as a natural 
part of their architecture method 
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o avoid having to develop significant documentation for the assessments 
o decrease the impact of the assessments on their busy schedules 

− A large system is too big and complex to be developed using the waterfall devel-
opment cycle. The use of an incremental, iterative, and parallel development cy-
cle means that different parts of the architecture will reach different levels of ma-
turity at different times. 

4. Set architecture assessment objectives. 

Lesson: During the initial kickoff meeting, the assessment team(s) and top-level archi-
tecture team should develop a consensus regarding the objectives of the set of assess-
ments of the system’s overall architecture. 

Rationale: 
a. Architecture assessments can have different objectives. 
b. These objectives influence the importance and level of detail of the assessments. 
c. A consensus on the assessment objectives enables the teams to 

− agree on the proper tailoring of the assessment method 
− set the overall assessment scope 

5. Set overall assessment scope. 

Lesson: It is important to set the scope of the set of assessments of the overall system 
architecture (or that subset of this architecture that is intended to be assessed). During 
the initial kickoff meeting, the top-level architecture team and the assessment team 
should agree on the scope of the overall assessment in terms of the intended: 
a. specific architectural elements (e.g., subsystems) to be assessed 
b. level of detail within (i.e., average/maximum depths in the hierarchical architecture 

below) these elements to which the architecture will be assessed (e.g., subsystems 
and sub-subsystems) 

c. default, specific types of architecturally significant requirements (e.g., quality fac-
tors) against which to evaluate these architectural elements 

Rationale: 
a. This knowledge is needed to estimate the total resources and costs to be allocated to 

the assessment. 
b. This knowledge is needed to develop an initial general schedule for the assessments 

to ensure that the architectural elements being assessed are sufficiently complete or 
important to justify the cost and effort needed to perform a proper assessment. 

c. Setting the overall scope helps to ensure that the system will satisfy the customer’s 
expectations and meet the customer’s needs. 

d. Subsystems of the subsystems to be assessed may 
− be at the level of design, rather than architecture and thus be out of scope 
− not be sufficiently complete or important to justify the cost and effort needed to 

perform a proper assessment 

6. Agree on definitions. 

Lesson: During the requirements meeting, it is critical for the architecture and assess-
ment teams to agree on the exact definitions of the quality factors (and their subfactors) 
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to be used as the basis for the architecture assessment. It is also important to agree on 
what the corresponding quality requirements are. Although the importance of different 
quality factors and quality requirements often differs from subsystem to subsystem, dif-
ferent subsystems should not have different definitions or “interpretations” of the quality 
factors. 

Rationale: 
a. In practice, there is often confusion between the definitions of quality factors and 

the definition of the associated quality factor requirements. 
b. Although international standards defining quality factors exist, different people and 

organizations typically have different definitions of quality factors in practice. 
c. These definitions may legitimately vary within large systems because of the appli-

cation domains of different architectural elements. 
d. The use of different definitions leads of confusion, miscommunication, and the 

waste of time and effort. For example, some people may not understand the differ-
ences between availability, reliability, and stability. Others may confuse the stability 
of a system in terms of system failure with the stability of the system’s architecture 
in terms of resistance to change in spite of requirements change. 

7. Primarily assess by subsystems within tiers. 

Lesson: Assessments should be performed on individual architectural elements within 
the architecture’s hierarchical decomposition tier structure (e.g., system of systems, sys-
tems, subsystems, sub-subsystems, etc.). 

Rationale: 
a. Individual architectural elements (e.g., subsystems) tend to provide a reasonable 

size for assessments in terms of limiting the duration of individual assessments.  
b. Clarifying the tier levels make it easier to differentiate architecture (tier n) versus 

detailed design (tier n+1) as well as requirements (from tier n-1).  
c. It would be confusing to try to assess the architecture across too many tier levels. 

Exceptions: 
a. Sometimes, multiple subsystems are highly related in terms of architectural compo-

nents, mechanisms used to support the architecturally significant requirements, and 
architects. Therefore, it may be possible to assess two architectural elements during 
a single week. 

b. It is often important to perform a small number of “deep-dives” to verify actual ar-
chitectural support via a subsystem’s sub-subsystems. 

8. Ensure adequate resources and planning. 

Lesson: It is important that all teams include assessments in their team plans and team 
schedules so that they can ensure that their members are available and have adequate 
funding to support the assessments. 

7.2 Subsystem Requirements Review Phase 
The following lessons are related to the Subsystem Requirements Review Phase of the 
QUASAR method: 
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1. Hold requirements review prior to architecture assessment. 

Lesson: For each architectural element being assessed, the relevant development team(s) 
(i.e., requirements team and/or architecture team) should perform an initial requirements 
review for the assessment team. This review should be held a sufficient amount of time 
prior to the architecture assessment. 

Rationale: 
a. Such a review helps ensure the existence of the architecturally significant quality 

goals and requirements.  
b. It helps ensure a common understanding of these goals and requirements. 
c. It minimizes confusion over and misinterpretation of the requirements and use 

cases. 
d. Listing the driver requirements after listing the architectural decisions is of little 

value, especially if the requirements are merely identified by number. However, 
even if the requirements are presented and agreed upon during an initial require-
ments/driver meeting, it helps to briefly list them prior to describing how the archi-
tecture supports the quality factors so as to provide a clear rationale/justification for 
the architecture decisions. 

2. Identify architecturally relevant requirements. 

Lessons: This is not a requirements assessment, but rather an architecture assessment. 
Cover the requirements only to the extent that the allocation of requirements to major 
architectural elements needs to be understood. Concentrate on the architecturally signifi-
cant requirements so that the architectural support for these requirements can be as-
sessed. 

Rationale: 
a. It is very difficult to determine if the architecture sufficiently supports a quality fac-

tor without well-specified requirements specifying a required minimum measurable 
level of quality. For example, just how scalable must the element be and in what 
way? Without knowing how good the architecture must be, it is very difficult to ob-
jectively determine if the architecture is good enough. 

3. Concentrate on quality requirements. 

Lesson: During the requirements meeting, it is important to ensure that the architecture 
and assessment teams understand the differences between quality factors and their asso-
ciated quality requirements that have (or should have) been derived and allocated to the 
subsystem being assessed. It is also important to accept these quality requirements as re-
quirements and not merely as “assessment criteria.” 

Rationale: 
a. The definition of a quality factor should not change from subsystem to subsystem. 
b. A quality factor is not a requirement, but merely a characteristic of the system or 

subsystem that may or may not be there. It does not in and of itself imply any im-
pact on the subsystem unless there is a requirement for the subsystem to exhibit that 
quality factor to a specific degree. 
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c. Although there is a cost associated with requirements because of the associated 
verification effort, calling quality requirements “assessment criteria” minimizes 
their influence on the architecture. 

d. Lack of agreement on the relevant quality requirements allocated to the architecture 
means that these requirements do not end up being derived and allocated to the ar-
chitecture. This makes it difficult to assess the architecture against these non-
derived, non-allocated requirements. 

4. Set individual assessment scope. 

Lesson: It is important to set the scope of each assessment. At the requirements meeting 
prior to the assessment meeting, the architecture and assessment teams should agree on 
the scope of the assessment in terms of the 
a. specific architectural elements (e.g., subsystems) to be assessed 
b. level of detail within (i.e., depth in the hierarchical architecture below) these ele-

ments against which the architecture will be assessed (e.g., subsystems and sub-
subsystems) 

c. specific types of architecturally significant requirements (e.g., quality factors) 
against which to evaluate these architectural elements 

Rationale: 
a. All of the subsystems may not be sufficiently complete or important to justify the 

cost and effort needed to perform a proper assessment. It makes little sense to 
evaluate a subsystem if its associated requirements are still largely volatile and un-
specified. 

b. Subsystems of the subsystems to be assessed  
− may be at the level of design rather than architecture and thus be out of scope 
− may not be sufficiently complete or important to justify the cost and effort 

needed to perform a proper assessment 
− have different quality factors, the relevance and importance of which may vary 

from subsystem to subsystem 
c. Setting the scope of the assessment enables the 

− architecture team to minimize the amount of effort required to prepare for the as-
sessment meeting by limiting the amount of preparatory documentation (e.g., 
presentation materials) they must develop for the assessment meeting 

− assessment team to minimize the amount of effort required to prepare for the as-
sessment meeting by restricting their reading to relevant architectural documen-
tation, diagrams, and models 

− assessment team to create an appropriate assessment notes template that is lim-
ited to the specific subsystems to be assessed 

5. Select architecture-appropriate quality factors. 

Lesson: Determine the architecturally significant quality factors against which to evalu-
ate an architectural element during its associated requirements meeting. At the same 
time, determine the relative priorities of these selected quality factors. 

Rationale: 
a. Intraoperability can be as (or more) important as interoperability when a system in-

tegrator is integrating subsystems provided by multiple subcontractors or vendors.  
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b. Forcing all architecture assessments to be made against the same quality factors of-
ten forces the architects to stretch the meaning of a relatively inappropriate quality 
factor so that they can “get a check in the box.” 

c. Forcing architects to prepare for and undergo an assessment against an inappropri-
ate quality factor gives the architects the impression that the assessment is irrele-
vant and largely a waste of time. 

d. The most important quality factors in terms of their impact on the architecture vary 
from architectural element to architectural element based on its application area 
(e.g., aircraft vs. trainer).  

6. Train subsystem architecture team. 

Lesson: Break the assessment of a subsystem’s architecture into two parts: an initial re-
view to train the assessors on the architecture followed by multiple assessments to test 
portions of the architecture. 

Rationale: It is good to give the architects (at an early meeting) 
a. examples of expected arguments (i.e., architectural decisions) 
b. examples of types of evidence (e.g., context diagram for interoperability) 
c. checklists for verifying their readiness for the assessment meeting 
d. template for presentations 

7. Select an adequate set of relevant quality factors. 

Lesson: Select an adequate set of quality factors that is appropriate for the subsystem 
being assessed. Ensure the development of a consensus on the quality factors among all 
teams (i.e., assessment, requirements, and architecture) that are stakeholders in a subsys-
tem assessment. If necessary, resort to a final decision by an assessment authority (e.g., 
assessment team leader).  

Rationale: Because of the assessment cost in terms of effort and availability of critical 
personnel, there is a strong tendency (especially within the architecture team) to limit the 
scope of the assessments in terms of the quality factors on which quality cases are de-
veloped, sometimes beyond that which is appropriate. Whereas the subsystem architec-
ture team may feel that they are the only ones qualified to decide regarding their subsys-
tem, other teams such as the requirements team, system architecture team, and 
assessment team (representing the acquisition and user organizations) are also major 
stakeholders in ensuring that important quality factors are not omitted. 

Differences between subsystems provide important, legitimate reasons for choosing dif-
ferent quality factors on which to base quality cases. The quality factors often need to be 
expanded to include programmatic constraints such as budget (affordability) and sched-
ule limitations. 

Finally, there will be significant argumentation and loss of collaboration if a consensus 
is not developed early. 

8. Ensure understanding of relevant quality factors. 

Lesson: It is critical for all meeting attendees to understand the quality factors and the 
architectural support for each of them. 
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Rationale: Sometimes attendees become confused about the meanings of the different 
quality factors or what documentation constitutes valid evidence. This can lead to argu-
ment and evidence that does not actually support the associated requirements. For ex-
ample, testability is the degree to which the architecture supports testing rather than how 
much testing one intends to perform. Plans to use a testing tool are also not evidence that 
the system architecture adequately supports testability. 

9. Develop requirements trace. 

Lesson: The architects should create a trace from the requirements to the associated 
quality factors. 

Rationale: Traces are very useful to ensure that the architecture supports the associated 
quality-factor-related requirements. Preparing a requirements trace from the quality-
relevant requirements to the individual quality factors helps the assessment team deter-
mine potential holes in the requirements and the relevant drivers of the architecture. 

7.3 Subsystem Architecture Assessment Phase 
The following lessons are related to the Subsystem Architecture Assessment Phase of the 
QUASAR method: 

1. Provide initial overview of subsystem architecture. 

Lesson: The subsystem architecture team should start the subsystem architecture as-
sessment meeting by presenting a top-level overview of the subsystem architecture to 
the assessment team. 
a. Keep overview short. 

Lesson: Keep the initial overview brief. 
Rationale: A short briefing providing an overview of the subsystem architecture 
will not take an excessive amount of time away from the architects’ presentation of 
their quality cases. In fact, it will save time by ensuring that all assessors have the 
same minimal foundation in the subsystem, the architecture of which is being as-
sessed. 

b. Present primary diagrams. 
Lesson: This overview should include the primary diagrams documenting the major 
architectural components of the subsystem and their major relationships (e.g., col-
laboration diagram, network diagram, and context diagram). 
Rationale: Because of scheduling conflicts, not all of the assessors (especially sub-
ject matter experts brought in specifically for the assessment) will have had the op-
portunity to adequately review the subsystem architecture prior to the meeting. Be-
ing primary evidence supporting the architects’ arguments, these diagrams set the 
context for the quality cases that follow. These diagrams are important evidence 
that back up the architects’ arguments by greatly clarifying some of the most im-
portant architectural decisions. 
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c. Present primary decisions. 
Lesson: This initial overview could also include a brief listing of the major architec-
tural policy decisions (e.g., architecture patterns and mechanisms) that are to be 
flowed down into these lower level architectural components (e.g., sub-subsystems 
and associated processes). 
Rationale: This listing helps provide a good introduction to the architects’ argu-
ments in their quality cases.  

d. Mount diagrams on walls. 
Lesson: The subsystem architecture team should mount large copies of these pri-
mary architectural diagrams on the walls of the assessment meeting room. 
Rationale: The assessors can easily refer to these diagrams during the later presen-
tations and during the meeting breaks.  

e. Highlight primary architectural decisions. 
Lesson: If practical, the subsystem architecture team should clearly identify their 
major relevant architectural decisions on these wall-mounted diagrams (e.g., use 
highlighters to document relevant hardware redundancy for reliability cases or clas-
sified data flows for security cases). 
Rationale: The entire diagram is not relevant to the arguments of specific quality 
cases. Marking the important parts of the diagrams makes it easier for the architects 
to convey their arguments to the assessors. Manual marking of the relevant quality 
case perspectives of the architectural views is appropriate because tool support to 
provide these perspectives is rare.  

f. Leave diagrams up. 
Lesson: These important diagrams should left up on the walls during the entire 
meeting. If the assessors are going to develop their outbrief and the initial parts of 
their meeting report in the same room where the assessment meeting it taking place, 
then these diagrams should remain on the walls until the assessment team leaves. 
Rationale: The assessors need to refer to these diagrams often, and the large size of 
these diagrams makes it easy for multiple assessors to gather around them and dis-
cuss the architecture and the architects’ decisions.  

2. Focus on assessing the existing architecture. 

Lessons: It is important to ensure that the assessment team stays on topic so that the ar-
chitectural assessment does not devolve into an assessment of the requirements, design, 
or implementation. Although occasional deep dives into the design may be used as a 
way to validate the quality of the architecture in terms of its implementability, care must 
be taken to ensure that excessive time is not wasted going down an interesting but rela-
tively unimportant rabbit hole. 

Rationale: 
a. Technical members of the assessment team have a natural inclination and curiosity 

that can lead the assessment off track and out of scope. 
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b. Members of the architecture team are typically very busy and do not have unlimited 
time to allocate to an architecture assessment. They may legitimately resent what 
they might consider to be a waste of valuable time. They may also fear receiving a 
negative assessment on something (e.g., design or implementation) that is not yet 
ready for assessment and for which they have not adequately prepared. 

3. Avoid a “trust me” approach. 

Lesson: It is important that the architects understand that they must prove their case by 
providing an adequate amount of actual evidence to back up their arguments (i.e., show 
that they have in fact made the architectural decisions they say they have and show that 
these decisions were sufficient to ensure that the architecture adequately supports its de-
rived and allocated requirements).  

Rationale: Not relying solely on the architect’s verbal description is not an accusation of 
lying but rather merely due diligence on the part of the assessment team.  

4. Determine if arguments and evidence are incomplete. 

Lesson: Members of the assessment team may discover that the architects have inadver-
tently not provided all of the arguments and evidence that they could have. For example, 
if the architects claim that their architecture adequately supports testability in terms of 
testing support for fault tolerance, they may only think of how the architecture enables 
them to insert failures, whereas other properties of the architecture (e.g., levels of modu-
larity and cohesion, well-defined interfaces, publish-subscribe, and test ports) may also 
make it easier or more difficult to perform subsystem (acceptance), integration, and sys-
tem (functional, fault tolerance) testing. 

Rationale: Quality cases are often incomplete due to missing arguments and evidence 
because of unfamiliarity with quality cases and exactly what is considered to be appro-
priate argument and evidence. Due to their greater familiarity with the QUASAR 
method, the assessment team (especially the subsystem liaison) can often identify miss-
ing parts of quality cases. 

5. Use best quality case presentation order. 

There are two main ways that the presentation of the architects’ cases that their architec-
ture supports its derived and allocated architecture-related requirements:  
a. By subsystem, then by requirements type within subsystem.  
b. By requirements type, then by subsystem support within requirements type.  

Lesson: The best approach is to organize the presentation first by requirements type 
(e.g., quality factor) and then by subsystem within the subsystem, the architecture 
of which is being assessed.  
Rationale: Assessing the architecture against the quality attributes is much more 
successful when performed first by quality attribute followed by subsystem support 
for the specific quality attribute as compared to the subsystem first followed by 
quality attribute within subsystem. The quality attribute first approach forces the 
architects to better address the individual quality attributes and to not rely on pre-
senting preexisting general subsystem documentation, much of which is not rele-
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vant to the scope of the assessment. It also makes the assessors’ job of producing a 
report sorted by quality attribute much easier. 

6. Present architecture engineering tradeoffs. 

Lesson: It is important for the architects to address the engineering tradeoffs they make 
between the different quality factors and the engineering tradeoffs they make between 
subsystems (e.g., allocating limited resources utilized by different subsystems such as 
timing budgets). 

Rationale: Quality factors are often somewhat incompatible in the sense that it is diffi-
cult to increase two simultaneously. For example, some of the techniques used to in-
crease performance (local optimization) may decrease maintainability (e.g., local opti-
mization for the sake of improving performance may increase coupling and decrease 
modularity, thereby decreasing maintainability). Similarly, increasing security may de-
crease usability (e.g., by requiring more frequent identification and authentication). 
Similarly, the system architecture not only consists of the architecture of the individual 
subsystems, it also addresses how these subsystems collaborate to meet the requirements 
of the overall system. Therefore, it is not sufficient to concentrate on individual quality 
factors and individual subsystems.  

7. Provide only some scenarios as evidence. 

Lesson: All evidence should not be given in the form of scenarios. 

Rationale: While using single scenarios is a way of making quality requirements more 
meaningful, they often do not address all of the subsystems, thereby providing incom-
plete arguments and evidence than what is needed. 

8. Present structure before functional views. 

Lesson: The architects should present the structural architecture in terms of element 
names, responsibilities, and relationships before they describe the functional behavior of 
how they collaborate to fulfill their assigned use cases. The structure needs to address 
the hardware structure, software structure, and deployment of software to hardware. The 
architects should present an adequately complete set of appropriate views, ensuring that 
no single view dominates the architecture documentation. 

Rationale: By emphasizing the components of the architecture and how they are related, 
it makes it easier to understand how these components collaborate to meet their allo-
cated requirements. Otherwise, the architects may instead concentrate on a “logical ar-
chitecture” of functions that the system must perform, rather than the actual architecture 
that helps implement these collections of functional requirements. Also, emphasizing 
functional views of the system may underemphasize the system’s required qualities and 
how the system’s architecture helps the system provide them. 

9. Keep evidence within scope. 

Lesson: Evidence presented during the architecture assessment meeting should remain 
within the scope of the assessment: 
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a. Evidence presented by architects 
Discussion: In practice, architects may not understand what kinds of documents 
make legitimate evidence to back up their arguments. Sometimes in their haste, the 
architects provide all of the documentation they have produced related to archi-
tecting (such as planning or procedural documentation), regardless of whether it 
provides evidence concerning the architecture’s actual existing support for helping 
the subsystem achieve its derived and allocated quality requirements. 
Lesson: As part of their quality cases, the architects should take care to only present 
legitimate evidence that supports their arguments (i.e., is within the scope of the as-
sessment). 
Rationale: Providing irrelevant material only wastes the time they took to provide it 
and the time the assessors took to review it. The assessors only have limited time 
during which to prepare for the assessment and reading irrelevant material prevents 
them from reviewing the relevant evidence. It also tends to give them the (poten-
tially wrong) impression that the architects either do not have adequate evidence to 
back up their arguments or do not understand the documents they have.  

b. Evidence requested by assessors 
Discussion: During the assessors’ questioning of the architects, the assessors may 
become aware of additional evidence that was not presented or provided to them. 
For example, an architect may raise a new argument when questioned about an as-
pect of the architecture, and the assessors may then legitimately ask the architect 
for supporting evidence. However, it is not uncommon for technical assessors to 
find quite interesting certain information mentioned in passing even though it does 
not directly support the architects’ arguments.  
Lesson: To the extent appropriate and practical, the assessors should carefully limit 
their requests for additional evidence to evidence that is actually relevant to the ar-
chitects’ arguments concerning the architecture’s actual support for the subsystem 
achieving its quality goals and meeting its quality requirements. 
Rationale: Due to their busy schedule and the limited time they have available to 
support the assessment, the architects should legitimately point out that the re-
quested documentation (e.g., managerial, process, detailed design, or implementa-
tion documentation) is outside the scope of the assessment and need not be pro-
vided. 
Counterargument: Because there are rarely clear, verifiable derived quality re-
quirements to drive the architecture, the assessors sometimes must use process 
documentation to see what the contractor is using to drive their architecture (e.g., 
the reliability process used to determine the probability of software failure to de-
termine how reliable the architectural components must be). Similarly, the asses-
sors typically should report any out-of-scope defects they may serendipitously find. 
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10. Ensure availability of actual architects. 

Lesson: It is very useful to have the actual subsystem architects available during the as-
sessment meeting. Trying to save the subsystem architects time by having only the pri-
mary system chief architect present their quality cases for them is not an effective way to 
run the assessment meeting. 

Rationale: Having the subsystem architects present their own quality cases is best be-
cause the subsystem architects 
a. understand their own architectures better then the chief architect does 
b. are immediately available to answer detailed questions posed by the assessment 

team 
c. can quickly locate and display the specific relevant information within the large 

amount of evidentiary documentation 

11. Use existing documentary evidence. 

Lesson: To the extent practical, the architects should present their quality cases using 
existing architectural documentation. 

Rationale: Architects should have documented their architectural decisions and associ-
ated rationales as a normal part of their architecture process. By including this existing 
official (e.g., under configuration control) documentary evidence in their quality cases, 
architects both minimize the work needed to prepare for an assessment and ensure that 
the actual architecture is presented. 

Unfortunately, some architects either may not do an adequate job of documenting their 
architecture in the first place or else they may not keep their architectural documentation 
up-to-date as their architecture naturally evolves. In this latter case, the architects might 
try to produce some informal, “quick-and-dirty” PowerPoint presentations describing 
their architectures just for the assessment. They might also try to present existing docu-
mentation that does not describe the actual architecture, but instead plans and procedures 
that document their original intended approach for producing the architecture.  

12. Take architecture maturity into account. 

Lesson: It is important for the assessment team to know the status/maturity of the archi-
tectural elements being assessed.  

Rationale: For example, if an element’s requirements are still largely unspecified, it is 
inappropriate to try to assess the quality of its architecture. 

13. Emphasize assessment over advice. 

Lesson: Assess the architecture by listening to the architects’ presentation of existing 
evidence and asking questions for clarification rather than spending significant amounts 
of time trying to train the architects in what is important for them to know. 

Rationale: The primary duty of the members of the assessment team is to assess the 
quality of the architecture. As technical experts, they will be tempted to try to solve any 
perceived deficiencies rather than just note them. There is insufficient time during as-
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sessment meetings to solve architectural weaknesses, members of the assessment team 
probably do not have adequate depth of knowledge and experience in the subsystem be-
ing assessed to make optimal recommendations, and it is not their responsibility to archi-
tect the subsystem being assessed; that is the responsibility of the architecture team. 

14. Ensure reasonable assessment size. 

Lesson: The assessment should be decomposed into multiple, small assessments so that 
individual assessments can be performed in a reasonably small number of days. 

Rationale: 
a. The members of the architecture and assessment teams are typically extremely busy 

with other critical tasks. 
b. They typically cannot afford to spend more than a few consecutive days supporting 

an assessment. 
c. The assessments are typically locally located with the architects, and if the asses-

sors must travel to the location of the assessments, assessments that last longer than 
a few days may require the assessors to stay over the weekends, thereby increasing 
assessment cost and imposing on the assessors. 

7.4 Miscellaneous Lessons 
1. Produce meeting preparation information. 

To make the meetings more effective, it is important to ensure that the architecture team 
supplies preparatory materials to the assessment team and that the assessment team re-
views this information. In one case, the assessment was made much more difficult be-
cause much of the documentation required as evidence was not supplied as early as 
originally required by the assessment method, as early as verbally promised by the con-
tractor, or at all. 

2. Decompose into two-person assessment subteams. 

During the assessment meeting and subsequent development of the assessment report, 
the assessment team should be decomposed into two-person subteams, with each con-
centrating on different groups of quality factors. They should be assigned quality factors 
based on their experience, training, and expertise in the quality factors. 

Rationale: 
a. This use of subteams increases the productivity of the assessment team by enabling 

them to work in parallel, especially during the generation of the assessment report. 
b. This also helps improve the completeness of the assessment by allowing evaluators 

to concentrate on evaluating the architecture’s support for specific quality factors. 

3. Provide appropriate preparatory information. 

It is important to ensure that the information provided by the architecture team to the as-
sessment team is appropriate. Appropriate information includes (1) general information 
needed to get up to speed on the architectural element being assessed, (2) architecturally 
significant requirements (i.e., requirements such as quality factor related requirements 
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that drive the architecture, and (3) official project documentation (e.g., architecture dia-
grams, models, and documents) that captures the architectural decisions that support the 
achievement of these architecturally significant requirements. Provide indexes and/or 
highlighting of relevant information buried within large amounts of preparatory eviden-
tiary evidence. Preparatory information should not include planning or process docu-
mentation. 

Rationale:  
a. Plans for developing the architecture may show intent, but they do not demonstrate 

actual support for the architecturally significant requirements. 
b. Procedures used to develop the architecture also do not demonstrate actual support 

for the architecturally significant requirements. Similarly, test plans and procedures 
do not clearly provide evidence for the architecture’s support for testability. 

c. Design and implementation documentation is typically not appropriate preparatory 
information because it does not directly address architectural decisions and their ra-
tionales. Any indirect architectural information that exists will be buried within 
large amounts of irrelevant information and be difficult to identify and interpret. 

d. An index to relevant information or highlighting of relevant information makes it 
easier to identify the relevant information within the preparatory materials, espe-
cially evidentiary documentation. 

e. Using indexes and highlighting enables assessors to avoid wasting time searching 
for relevant information or reading irrelevant information.  

4. Take incremental architecture development into account. 

In an iterative, incremental development process, it can be difficult to determine what 
architecture decisions apply to which blocks and releases. 

5. Ensure adequate pre-meeting preparation. 

The assessors cannot properly prepare for an assessment by reading the pre-assessment 
documentation unless it is made available with enough time to review before the as-
sessment meeting. 

6. Apply different emphasis at different levels. 

It is difficult to obtain architectural information that supports a quality attribute assess-
ment when starting at the top level of a large and complex software-intensive program or 
system. We need more than just an allocation of use case steps to very large domains and 
subsystems. We also need information about such topics as performance, safety, security, 
reliability, robustness, internationalization, etc. At the top levels, we need to see quality 
policies (e.g., safety policies at tiers 2–4) if the associated architectural mechanisms 
(e.g., safety mechanisms such as standard safeguards at tier 5) are at lower levels. 

7. Differentiate observations and findings. 

The assessment report should properly differentiate between observations and findings. 
The sections and subsections should be numbered so that it is easier to identify the top-
ics of discussion. 
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8. Differentiate architecture from design. 

It is important to clarify the difference between architecture and detailed design and re-
main at the architecture level. 

9. Use scenarios as tests. 

Use scenarios as test cases to verify that the architecture does in fact support specifica-
tion compliance. Do not use scenarios to introduce and explain the basic architecture but 
rather to test the architecture’s ability to fulfill its requirements and drivers after the ar-
chitecture has been presented. Review the structural and functional architecture but ver-
ify the architecture via scenario test cases. Scenarios need to test the hard-
ware/deployment architecture as well as the software architecture, especially with regard 
to fault tolerance, security data flow, performance, etc. 

10. Understand that not all tiers are equal. 

Different architectural elements (e.g., subsystems) at the same tier in the architecture are 
typically not all of equal size, complexity, and criticality. For example, a small software 
configuration item and a major hardware/software subsystem might reside at the same 
level within the overall aggregation hierarchy of the system architecture. This means that 
the scope of the architecture assessments should not be restricted to all architectural ele-
ments at the same tier level (e.g., tier 4 or tier 5). 
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8 Future Directions 

As with most endeavors, the QUASAR method is not perfect. There are several areas that 
deserve further research, lessons learned from trial use, and potential modifications to im-
prove the method. These include 

1. Ensure architectural integrity across multiple subsystems. 

The current QUASAR method emphases the assessment of system architectures in terms 
of the assessment of individual subsystem architectures, the assessment of these subsys-
tem architectures in terms of the assessment of their sub-subsystem architectures, and so 
forth. When assessing the architectures of individual subsystems at the same tier in the 
overall system aggregation hierarchy, it becomes easy to miss the “whole forest for the 
individual trees.”  

Specifically, it is important that higher level architects ensure the architectural integrity 
across multiple subsystems architected by different subsystem architecture teams work-
ing in parallel. For example, the different subsystem architects may have taken different 
architectural approaches to handling the scheduling of processes (e.g., the performance 
quality factor) or fault tolerance (e.g., the robustness quality factor). These approaches 
may work well at the individual subsystem level, but may cause significant problems 
that only show up when the subsystems are integrated (e.g., during integration or system 
testing). 

The assessment teams must take care to properly assess whether architectural integrity is 
maintained across the entire system architecture. If not, then the assessment team must 
determine if there are good reasons why the architectural approaches vary and that these 
variances do not cause unexpected or unacceptable architectural risks.  

It is possible that future versions of the QUASAR method will provide additional sup-
port for assessing architectural integrity across multiple subsystems within the overall 
system architecture. 

2. Weigh engineering tradeoffs between quality factors. 

The current version of the QUASAR method emphasizes the assessment of the system 
architecture’s support for cohesive sets of quality goals and requirements on an individ-
ual quality factor by quality factor basis. This is because quality cases consist of claims, 
arguments, and evidence associated with an individual quality factor or quality subfac-
tor.  

Yet, a system architect must make engineering tradeoffs between the different quality 
factors. For example, increasing security typically makes it harder to achieve perform-
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ance and usability requirements. Thus, requirements engineers must specify a feasible 
combination of quality requirements and architects use their limited resources to develop 
a globally optimal (read sufficient) architecture that adequately supports the meeting of 
all quality requirements rather than develop an over-architected architecture that is lo-
cally optimal for some quality factors and inadequate for others. The current version of 
QUASAR addresses this problem during the subsystem architecture assessment prepara-
tion and meeting in two ways: 
a. as part of the architects’ introduction of their architecture to the assessment team 
b. as a rationale associated with one or more individual architectural decisions in qual-

ity case arguments  

It is possible that future versions of the QUASAR method will provide additional sup-
port or more emphasis for assessing the architects’ engineering tradeoffs between quality 
factors. 

3. Increase emphasis on active probing of the architecture. 

The current version of QUASAR emphasizes the architects’ responsibility to make their 
cases that their architectures have sufficient quality. After all, they should best know 
what quality requirements their architecture must support (claims), what architectural 
decisions they made and why (arguments), and where they documented these decisions 
(evidence). However, architects naturally tend to emphasize the best aspects of their ar-
chitecture. Architects do not tend to bring out the weaknesses in their architectures and 
naturally do not address potential architectural decisions and risks that did not occur to 
them. The current version of the QUASAR method recognizes this problem by assigning 
the assessment team the responsibility to ask the architects probing questions about their 
architectures. Currently, the assessment team can request the architects to run through 
one or more scenarios as a test of their architecture’s support for a quality requirement. 

It is possible that future versions of the QUASAR method will provide additional em-
phasis on the assessment team’s responsibility to actively probe the architecture. 

4. Develop a catalog of architectural styles, patterns, and mechanisms to use as stan-
dardized arguments.  

In practice, there are relatively standard ways to solve commonly occurring architectural 
problems. Given a set of quality requirements, architects learn to consider associated ar-
chitectural styles, patterns, and mechanisms to support their achievement. For example, 
hardware redundancy is a common way of improving availability and reliability. There-
fore, it would be useful to develop a catalog of standard architectural arguments (i.e., ar-
chitectural decisions and associated rationales) and associated evidence. This would help 
architects both develop higher quality architectures and build better quality cases. It 
would also help members of assessment teams understand what to expect from the archi-
tects’ quality cases and ask probing questions when standardized solutions are not used. 
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5. Develop processes for achieving and determining sufficient architectural quality.  

One of the most difficult problems for architects and assessors alike is to know when an 
architecture possesses sufficient quality. Because the quality of the architecture by itself 
does not determine the quality of the system, a quality architecture is a necessary but not 
sufficient condition for ensuring the quality of the system. A low-quality design or im-
plementation can easily undo an architect’s good work when it comes to ensuring the 
quality of a system.  

The problem of knowing when an architecture is “good enough” is exacerbated by two 
contributing problems: 
− In current practice, quality requirements are often poorly specified as vague goals. If 

the quality requirement does not have an associated minimum acceptable threshold 
on some scale of measure, then it is ambiguous and it does not specify (for the archi-
tect, assessor, and tester) how good is good enough.  

− The architect cannot address individual quality requirements and quality factors in 
isolation. Systems must meet multiple types of quality requirements (e.g., perform-
ance and reliability, security and usability) that are naturally incompatible in the 
sense that making architectural decisions that increase one quality factor naturally 
decrease the other. For example, improving the availability, reliability, and robustness 
of a system typically decreases that system’s performance. Thus, architects should 
not locally optimize a system’s quality, one quality factor at a time; rather, architects 
must make engineering tradeoffs that achieve a globally optimized (actually accept-
able) architecture. 

Thus, it is difficult for both architects and assessors to know when a system’s architec-
ture sufficiently supports the system’s ability to meet all of its quality requirements of all 
types (i.e., of all relevant quality factors). Currently, the QUASAR method relies on the 
combined experience of the members of the assessment team to come to a consensus on 
the sufficiency of the architecture. More work needs to be done to enable the QUASAR 
method to better support determining the sufficiency of the quality of the sys-
tem/subsystem architectures. 

6. Augment with books and training.  

An earlier version of the QUASAR method was documented in a short, project-specific 
procedure document. This much larger handbook provides significant details and exam-
ples that could not be provided in the original procedure document. Yet this handbook is 
like a reference book and is not meant to be read from beginning to end as a normal sys-
tems engineering technical report or textbook. Therefore, this handbook should probably 
be augmented with a typical systems engineering technical book, which can be used as a 
textbook when teaching the quality assessment of system architectures. To improve 
stakeholder understanding of the QUASAR method, this handbook should also be sup-
plemented with actual training courses covering both theory (e.g., quality cases and 
components of the QUASAR method) and practice (e.g., exercises in producing and pre-
senting quality cases). 
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7. Consider tailoring down for smaller, simpler systems?  

The QUASAR method was originally developed for and used on an extremely large and 
complex, software-intensive systems of systems. Thus, the vast majority of systems are 
significantly smaller and less complex. The question naturally arises as to if and how the 
QUASAR method should be tailored for use on such systems.  

The QUASAR method is modular in the sense that it assesses the quality of the architec-
ture of systems in terms of the quality of the architectures of the system’s subsystems, 
the quality of the architectures of the subsystems in terms of the quality of the architec-
tures of their sub-subsystems, and so on. Therefore, in theory, QUASAR should be 
equally applicable for use on relatively small and simple systems; one merely decreases 
the scope of the assessment by performing the subsystem assessments on fewer subsys-
tems and against support for fewer quality attributes. In fact, even though an early ver-
sion of the QUASAR method was applied to a very large and complex system of sys-
tems, the architectures assessed were of subsystems that were of moderate size and 
complexity.  

A similar argument can be based on the large size and complexity of this handbook. 
However, this argument is probably misleading. One can provide a procedure document 
giving a brief overview of the QUASAR method in as little as 10 to 20 pages. The rea-
son why this handbook is so large is because it provides an in-depth description of all 
aspects of the method as well as an extensive number of example quality cases. 

Therefore, downsizing the QUASAR method is probably not a significant issue but is 
included here for the sake of completeness. More experience with using the method will 
determine whether or not this is a significant issue. 

8. Expand beyond system architectures.  

The current version of the QUASAR method is for assessing the quality of system archi-
tectures. But in order to do this, subsystem requirements reviews have been added to en-
sure that adequate derived quality requirements have been engineered (e.g., identified, 
analyzed, specified, and managed) and allocated to the subsystems, the architecture of 
which is being assessed. Thus, although the QUASAR method does not include the en-
gineering of quality requirements, it does include a review to ensure that they are engi-
neered in time to drive the architecture. 

However, the quality of a system’s architecture does not guarantee the quality of the as-
sociated system. For example, a system may have proper reliability requirements and 
have a good architecture that incorporates architectural patterns and mechanisms that 
support the reliability of the system. But if the system’s design, implementation, and 
testing include a sufficient number of specific kinds of defects, then the system will not 
meet its reliability requirements. A quality architecture is necessary but not sufficient to 
produce a quality system. 

Therefore, what is eventually needed is a system engineering approach to engineer qual-
ity into the system and an assessment approach to assess the quality of the system’s re-

160  CMU/SEI-2006-HB-001 



 

quirements, architecture, design, implementation (and production), and installation (in-
cluding for instance, its configuration). In addition to its architecture, quality cases can 
be used to document the quality of a system’s requirements, design, implementation, and 
installation. Therefore, the QUASAR method could be expanded beyond system archi-
tecture quality assessments to the quality assessment of the system itself and all of its in-
termediate work products. 
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9 Conclusion 

You should take away the following observations and ideas from the information in this 
handbook: 

• The quality of a system’s architecture is a critical driver of the quality of the system and 
is thereby critical to the success of the system. 

• It is imperative to assess the quality of a system’s architecture. Specifically, it is impor-
tant to incrementally assess the quality of the system’s architecture as the architecture is 
incrementally developed. In this way, architectural defects can be fixed and architectural 
risks can be managed before so much design and implementation takes place that cor-
recting the architecture becomes impractical. 

• System architects know (or should know) the following about their architectures: 
− the architecturally significant quality goals and requirements that were derived and 

allocated to their system or subsystems and that therefore drove their architectural 
decisions 

− whether their architectures adequately support the system achieving its architectur-
ally significant quality goals and requirements 

− the architectural decisions they have made and why they made them 
− how and where they documented these architectural decisions 

• Quality cases are a good way for the system architects to organize and present informa-
tion and thereby are a good way to make their case to the assessors that their architec-
tures have sufficient quality. 
− Architectural quality cases consist of a cohesive set of 

− claims that the architecture sufficiently supports the system or subsystem’s derived 
and allocated quality goals and requirements 

− clear and compelling arguments (consisting of architecture decisions and associ-
ated rationales) justifying belief in the architects’ claims 

− sufficient evidence (consisting of official diagrams, models, and documents or as-
sessor-witnessed demonstrations) supporting the architect’s arguments 

• This handbook provides numerous examples to give architects guidance as to what their 
architectural quality cases should look like. 

• QUASAR is a system architecture quality assessment method that is used to assess the 
quality of a system’s architecture based on quality cases developed and presented by the 
system architects to the assessment team. 
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• The QUASAR method includes 
− teams and member roles with associated responsibilities 
− four phases consisting of associated tasks and component steps 
− work products that are produced and used by members of these teams during the 

QUASAR phases and tasks 
• The QUASAR method was largely (but not totally) based on experience gained and les-

sons learned during its use in the assessment of the architecture of an actual large and 
complex software-intensive system. 
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Appendix A Acronyms and Abbreviations 

AC  Alternating Current 

APM  Automated People Mover 

ASCII  American Standard Code for Information Interchange 

ASP  Acquisition Support Program 

ATS  Automated Taxi Subsystem 

CDR  Critical Design Review 

C   Component 

CI  Configuration Item 

COMSEC Communications Security 

COMPUSEC Computer Security 

COTS  Commercial Off-the-Shelf 

CPU  Central Processing Unit 

DNS  Domain Name Service 

DoD  Department of Defense 

DoS  Denial of Service 

DS  Door Subsystem 

EMSEC Emissions Security 

FDDI  Fiber Distributed Data Interface 

FDCS  Fire Detection and Control Subsystem 

FDSS  Fire Detection and Suppression Sub-Subsystem 

FTP  File Transfer Protocol 
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GSN  Goal Structuring Notation 

HTTP  Hypertext Transfer Protocol 

HTTPS  Hypertext Transfer Protocol Secure 

HW  Hardware 

ICMP  Internet Control Message Protocol 

INFOSEC Information Security 

I/O  Input/Output 

IP   Internet Protocol 

IPT  Integrated Product Team 

ISDN  Integrated Services Digital Network 

JPO  Joint Program Office 

JSF  Joint Strike Fighter 

MHz  Megahertz 

MPEG  Moving Picture Experts Group 

MTBF  Mean Time Between Failures 

MTBMCF Mean Time Between Mission-Critical Failures 

NETSEC Network Security 

NFS  Network File System 

OPSEC  Operations Security 

OS   Operating System 

OTS  Off-the-Shelf 

PBS  Power Braking Sub-Subsystem 

PDR  Preliminary Design Review 

PERSEC Personal Security 

PHYSEC Physical Security 
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PMO  Program Management Office 

PPP  Point-to-Point Protocol 

QUASAR Quality Assessment of Software Architectures 

RFA  Request for Action 

RFI  Request for Information 

RFP  Request for Proposal 

RMS  Rate-Monotonic Scheduling 

SEI  Software Engineering Institute 

SME   Subject Matter Expert 

SOA  Service-Oriented Architecture 

SOAP  Simple Object Access Protocol 

SS  Sensor Sub-Subsystem 

SSL  Secure Sockets Layer 

TCP   Transmission Control Protocol 

UDDI  Universal Description, Discovery, and Integration 

UDP  User Datagram Protocol 

UML  Unified Modeling Language 

VDC  Volts of Direct Current 

VHF  Very High Frequency 

WSDL  Web Services Description Language 

XML  Extensible Markup Language 
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Appendix B Glossary 

Allocated Requirement 
a requirement that is [partially] assigned to a subsystem   

Architect 
the role that filled by a person who develops the architecture of a system or one of its 
subsystems 

Architectural Decision 
a significant decision made by one or more architects that determines a part of the archi-
tecture, such as the selection of an architectural style, pattern, or mechanism 

Architecturally Significant Requirement 
a system or subsystem functional, data, interface, or quality51 requirement that signifi-
cantly influences the architecture of the associated system or subsystem 

 Not every requirement has a meaningful impact on the architecture, because the archi-
tecture would be essentially the same regardless of the existence of the requirement. On 
the other hand, other requirements drive the architects to make significant architectural 
decisions. In fact, such architecturally significant requirements are the primary reasons 
why architects choose to use a specific architectural style, pattern, or mechanism. In 
other words, architecturally significant requirements are those requirements that cause 
the architects to incorporate important, pervasive, top-level, and global decisions and in-
ventions into their architectures. Because such architecturally significant requirements 
drive the architecture, they become the requirements against which the architecture is 
assessed. Quality cases demonstrate that the system/subsystem architecture sufficiently 
supports the ability of the system/subsystem to meet its architecturally significant re-
quirements, and QUASAR assessments use quality cases to determine whether the sys-
tem/subsystem architecture sufficiently supports the ability of the system/subsystem to 
meet its architecturally significant requirements.   

Architecture 
the most important, pervasive, top-level, and therefore global (i.e., strategic) engineering 
decisions, inventions, styles, patterns, and mechanisms and their associated rationales 
Architecture primarily includes the overall system structure in terms of its essential ele-
ments, their relationships, and their associated characteristics and behavior that enable 
them to collaborate together to achieve their derived and allocated requirements. Archi-
tecture also deals with all decisions that have a global impact such as the 

                                                 
51 Quality requirements tend to have the biggest influence on the architecture, so many if not most of 

the architecturally significant requirements are quality requirements. 
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− technology, languages, and off-the-shelf products to be used 
− standard approaches to concurrency (e.g., scheduling approach and ways of avoiding 

concurrency defects such as race conditions, starvation, and deadlock) to be used 
− standard approaches to achieve robustness and deal with exception raising, propaga-

tion, and handling 
The architecture is the most important work product produced during the performance of 
architecture tasks and provides a blueprint for design, implementation, and testing. 

This definition is quite general, while still clearly differentiating architecture from de-
sign. Architecture is global, whereas design is local. Architecture deals with strategic is-
sues, whereas design deals with tactical issues. Architecture involves ensuring the integ-
rity of the big-picture vision, whereas design deals with the lower level details. Finally, 
architecture involves choices that affect many developers, whereas design decisions im-
pact few beyond the individual designer and implementer of that design.   

Architecture Argument 
a logically coherent series of clear and compelling valid reasons justifying the assessors’ 
beliefs in one or more architecture claims. An architecture argument is typically on of 
the architects’ architectural decisions (e.g., the use of appropriate architectural compo-
nents, mechanisms, or patterns). 

 For example, the use of redundancy can be used as an argument that a system fulfills its 
availability and reliability requirements, the use of open interface standards for key in-
terfaces can be used as an argument of interoperability, and the use of a firewall can be 
used as an argument that a system fulfills its security requirements.  

Architecture Assessment 
a determination of the quality of the architecture of a system or subsystem 

Architecture Claim 
an assertion made by an architect as part of an architecture quality case that the architec-
ture of a system/subsystem supports the achievement of one or more of its architectur-
ally significant goals or the meeting of one or more architecturally significant require-
ments 

Architecture Evidence 
official, factual information that is part of a architecture quality case that clearly proves 
the truth of the architects’ arguments supporting their architectural claims 

Architecture Quality Case 
a quality case that makes the case for the quality of an architecture and therefore consists 
of architectural claims, architectural arguments, and architectural evidence 

Architecture Team 
a team responsible for producing an architecture and making a case to the assessment 
team that their architecture adequately supports each type of architecturally significant 
requirements 
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Argument 
a logically coherent series of clear, compelling, and valid reasons for believing one or 
more claims that a system or subsystem fulfills one or more of its architecturally signifi-
cant requirements, which is given as part of a quality case 

 For example, the use of redundancy can be used as an argument that a system fulfills its 
availability and reliability requirements, the use of open interface standards for key in-
terfaces can be used as an argument of interoperability, and the use of a firewall can be 
used as an argument that a system fulfills its security requirements.  

Assessment 
an assessment during which certain system characteristics or qualities are determined 

Assessment Kickoff Meeting 
the initial meeting during which the architecture team and assessment team come to a 
consensus on the scope and general scheduling of the following assessment meetings 

Assessment Meeting 
a meeting during which the architecture team presents their case to the assessment team 
that their architecture adequately supports each type of architecturally significant re-
quirements and answers questions posed to them by members of the assessment team 

Assessment Team 
the team that is responsible for assessing the quality of the architecture based on the ar-
chitecture team’s claims, arguments, and evidence 

Claim 
an assertion made as part of a quality case that a system/subsystem achieves one or more 
goals or meets one or more requirements 

 Note that a claim must be supported by clear and compelling arguments that in turn are 
based on sufficient official evidence in order to be judged substantiated by the assess-
ment team. 

Derived Requirement 
a requirement not explicitly specified by the customer but rather engineered and explic-
itly specified by the requirement team in order to fulfill one or more of the customer re-
quirements 

Evidence 
official, factual information that is part of a quality case that clearly proves the truth of 
the architects’ arguments supporting their claims that a system or subsystem fulfills one 
or more of its architecturally significant requirements 

 Although it typically consists of current project architectural diagrams, models, and tex-
tual documentation that are under configuration control, evidence may also include 
hardware exhibited to and directly observed by the assessment team (e.g., the configura-
tion of the subsystems of a system prototype seen during a tour of a development lab). 

 For example, a current official architecture diagram that clearly shows the incorporation 
of multiple servers and paired networks is valid evidence supporting the architect’s ar-
gument that the architecture incorporates the use of redundant hardware which in turn 
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backs up the architect’s claim that the architecture provides adequate availability and re-
liability. 

 Note that architecture plans and development procedures should not be considered to be 
evidence because they do not prove actual architecture support for architecturally sig-
nificant requirements, only intent. 

Goal 
1. a perceived need of a legitimate stakeholder in the system that drives the identifica-

tion, analysis, and specification of the requirements 
In other words, goals are the ambiguous, infeasible, unverifiable, informally docu-
mented, architecturally significant desires that are all too often specified instead of 
the specific requirements that should have actually been engineered. For example, 
“The system shall be modifiable, reliable, safe, and secure.” 

2. a top-level purpose that is decomposed into one or more detailed objectives 
For example, the goals listed in the first section of this handbook that drive the objec-
tives of the QUASAR method. 

Method 
a cohesive collection of endeavor-specific method components (e.g., work products, 
work units such as tasks, and the teams and roles that perform them) that model a sys-
tematic intended way of producing work products and providing services 
For example, QUASAR is a method for performing system architecture assessments. 

Model 
an abstraction (simplification) of something that captures its essential characteristics for 
some specific purpose while ignoring unimportant or diversionary details 

Quality 
the degree to which a work product (e.g., system, subsystem, architecture, or document) 
has useful and desirable characteristics as represented by its associated quality factors 

Quality Case  
for a given quality factor,52 the combination of a 
− cohesive collection of one or more claims that the system or subsystem architecture53 

adequately fulfills its associated quality-related requirements 
− corresponding structured set of clear and compelling valid arguments supporting 

these claims 
− sufficient amount of properly documented evidence supporting these arguments to 

convince a skeptical assessor of the validity of the claims and arguments 

                                                 
52 A quality case is a generalization of a safety case to other quality factors. There are various kinds 

of quality cases (e.g., interoperability cases, maintainability cases, reliability cases, and safety 
cases). 

53 Because this handbook deals with system architecture assessments, we only address system or 
subsystem architecture-level quality cases. In general, quality cases could include design and im-
plementation arguments and evidence. 
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Quality Case Diagram 
a UML class diagram that summarizes the claims, arguments, and evidence comprising a 
quality case and the relationships between them 

Quality Criterion 
a specific description of something that provides evidence either for or against the exis-
tence of a specific quality factor or subfactor 

Quality Factor (quality attribute, quality characteristic, or “-ility”)  
an important attribute, characteristic, or property of a work product (e.g., system, sub-
system, architecture) or process that characterizes a part of its overall quality 

Quality Measure 
a unit of measure that provides a range of numerical values enabling the measurement of 
the quality of a work product or process by documenting the degree to which the work 
product or process possesses (or shall possess) a specific quality factor or quality subfac-
tor 

Quality Requirement 
a requirement specifying that a system or subsystem must have a minimum required 
amount of a quality factor or one or more quality factors  
A quality requirement specifies that under certain conditions, the system or subsystem 
must exhibit a quality criterion demonstrating that one or more associated quality sub-
factors exist beyond a minimum threshold on an associated quality measure. 
The following is an example of a quality (performance) requirement: “When not in de-
graded mode (condition), the mortgage processing system shall correctly process mort-
gage applications (quality criterion) with a throughput (performance quality subfactor) 
of at least 100 applications per second (threshold on quality measure).” 

Quality-Related Requirement 
a requirement that has ramifications for the achievement of the associated quality 
Four types of quality-related requirements include quality requirements (safety require-
ments), quality-significant requirements (e.g., functional, data, or interface requirements 
that make the system safety critical because they can lead to hazards and accidents if not 
implemented correctly), quality subsystem requirements (e.g., requirements for safety 
subsystems such as fire detection and suppression systems), and quality constraints (e.g., 
architecture, design, and implementation decisions that are to be treated as if they were 
requirements).  

Quality Subfactor 
an important part of a quality factor 
For example, jitter, latency, response time, schedulability, and throughput are quality 
subfactors of the quality factor performance, whereas accidental harm, accident, hazard, 
and safety risk are quality subfactors of safety. 

QUASAR (Quality Assessment of System ARchitectures)  
a method for assessing the quality of a system’s architecture in terms of the architec-
ture’s support for its associated architecturally significant requirements based on the ar-
chitects’ claims, supporting arguments, and underlying evidence 
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Requirement 
an established need justifying the timely allocation of resources to develop a capability 
to achieve approved goals or accomplish approved missions or tasks 
Unlike goals, requirements should be cohesive, complete, consistent, correct, current, 
externally observable, feasible, mandatory, relevant, stakeholder-oriented, unambiguous, 
validatable, and verifiable. 

Requirements Meeting 
a subsystem-level meeting during which the architecture team demonstrates that the ar-
chitecturally significant requirements have been adequately engineered and identified to 
enable them to engineer the architecture 

Requirements Team 
the team that engineers the requirements (including architecturally significant require-
ments) for a system or one or more of its subsystems 

Safety Case 
a cohesive collection of claims that a system is sufficiently safe for a given usage in a 
given environment (i.e., that it fulfills its safety-related requirements), whereby the 
claims are based on a corresponding structured set of clear and compelling valid argu-
ments that are supported by a sufficient amount of properly documented evidence 

Software-Intensive System 
a system, major functionality and characteristics of which are implemented via software 
as opposed to via hardware or manual procedures

Subsystem 
an integrated subset of a system that provides a capability that is essential to the success 
of the system 

System 
a major, functionally cohesive, executable, and integrated aggregation of components 
(including hardware, software, and potentially data, manual procedures, and facilities) 
that collaborate to provide the capability to perform one or related missions

System Architecture 
an architecture of a system capturing its most important, pervasive, top-level, strategic 
inventions, decisions, and their associated rationales about the overall structure (i.e., 
subsystems, sub-subsystems, and their relationships) and associated characteristics and 
behavior including how they collaborate together to achieve their allocated requirements 
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Appendix C Quality 

The QUASAR method is fundamentally founded on the concept of quality. It assess the qual-
ity of system architectures in terms of quality cases, and the first part of quality cases are 
claims that the architecture sufficiently supports the system’s achievement of quality goals 
and meeting of quality requirements. Clearly, the QUASAR method cannot be effectively 
used unless there is a firm and unambiguous understanding of the meaning of quality. 

C.1 Quality Model 
The term quality is quite complex and often means different things to different people. To 
avoid this ambiguity, systems engineers must use a quality model that makes the term “qual-
ity” specific and useful for engineering systems [Firesmith 03]. A quality model does this by 
decomposing the term into its component concepts and their relationships to one another.  

As illustrated in Figure 20, a quality model is a hierarchical model (i.e., a collection of related 
abstractions or simplifications) for formalizing the concept of the quality of a system in terms 
of its following components: 

• Quality Factor (aka, quality attribute, quality characteristic, “-ility”) 

A quality factor is a high-level characteristic, attribute, or property of a system or sub-
system that characterizes an aspect of its quality. Quality has to do with the degree to 
which the system or subsystem possesses a combination of characteristics, attributes, as-
pects, or traits that are desirable to its stakeholders. As listed in Section C.2, there are 
many different quality factors such as availability, extensibility, performance, reliability, 
reusability, safety, security, and usability. These factors determine whether or not as sys-
tem has sufficiently high quality. Because many of the quality factors end in the letters 
“-ility,” they are often collectively referred to as the “-ilities.” Quality factors can be 
classified into more specific subclasses of quality factors (e.g., safety is a kind of defen-
sibility, which is a kind of dependability, which is a kind of quality). 

• Quality Subfactor 

A quality subfactor is a major component (aggregation) of a quality factor or of another 
quality subfactor. Thus, throughput and response time are quality subfactors of perform-
ance, whereas internationalization and personalization are quality subfactors of con-
figurability. 
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• Quality Measure 

Quality measures are measurement scales that provide a way to measure and quantify a 
quality criterion. Quality measures thus make quality criteria objective and unambigu-
ous. Quality measures support the production of metrics by providing numerical values 
for specifying or estimating the quality of a system or subsystem by measuring the de-
gree to which it possesses a specific quality factor or subfactor. 

 

Quality Model

Quality
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Quality
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Quality
Measure

System

defines the meaning of the 
quality of a

is measured 
using a

defines the 
meaning of

a specific type 
of quality of a

Subsystem

 

Figure 20: Quality Model 

C.2 Example Quality Factors and Subfactors 
Quality factors and subfactors are used to produce quality requirements, which are a major 
type of architecturally significant requirement. QUASAR assessments are thus typically or-
ganized around assessing architectural support for these quality factors and subfactors. 

Unfortunately, a great deal of time can be wasted in fruitless arguments between and among 
members of the architecture, assessment, and requirements teams regarding the meaning of 
the quality factors used to produce quality requirements, drive the system and subsystem ar-
chitectures, and on which the system quality assessments are based. There are several stan-
dard quality models [ISO 91] and associated taxonomies and ontologies [Firesmith 03]. As 
illustrated in Figure 21, the following examples taken primarily from the OPEN Process 
Framework Repository provide a fairly complete and consistent hierarchy of quality factors 
[OPFRO 06]. 
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Figure 21: Hierarchy of Usage-Oriented Quality Factors 

• Affordability – the degree to which a system or subsystem can be developed and manu-
factured within budget  
Quality subfactors of affordability include 
− Development Cost – the cost to develop the system or subsystem 
− Manufacturing Cost – the cost to manufacture instances of the system  
− Support Cost (aka, sustainment cost) – the cost to support the system one manufac-

tured and delivered. 
− Retirement Cost (aka, disposal cost) – the cost to retire the system once it is no longer 

needed. 
• Availability (aka, readiness) – the degree to which a system or subsystem is ready to 

function without failure in one or more specified ways at any time during a specified pe-
riod of time under normal conditions or circumstances (i.e., the proportion of time that 
the system or subsystem can be used) 

• Capacity – the degree to which a system or subsystem can successfully handle a large 
number of things at a single point in time or during a specific interval of time 

• Compliance – the degree to which a system or subsystem adheres to related standards, 
conventions, regulations in laws, and similar prescriptions 
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• Configurability – the degree to which a system or subsystem is or can be configured 
into multiple forms (i.e., configurations)  

Quality subfactors of configurability include 
− Internationalization (aka, globalization and localization) – the degree to which the 

system can be (or is) configured to function appropriately in a global environment in 
terms of 
− native languages, language idioms, spelling, and character sets  
− formats of contact information such as name, address, and phone number 
− currencies including real-time currency conversion 
− legal issues such as import/export laws, tariff and sales tax calculations, customs 

documentation, trademarks, and privacy laws 
− culture (e.g., use of inappropriate colors, symbols, or product names) 

− Personalization – the degree to which the system can be (or is) configured so that in-
dividual users can be presented with a unique user-specific experience 

− Subsetability – the degree to which the system can be released in multiple variants, 
each of which implements a different subset of requirements (i.e., each variant is a 
subset of a primary complete variant) 

− Variability – the extent to which the system exists in multiple variants, each of which 
implements a different superset of the common set of requirements (i.e., some re-
quirements are unique to each variant) 

• Consistency – the degree to which the components of a system or subsystem:54 
− belong to the same architectural styles  
− implement the same architectural patterns 
− use the same architectural mechanisms 

• Correctness – the degree to which a system or subsystem and its outputs are free from 
defects 

Quality subfactors of correctness include 
− Accuracy – the magnitude of defects (i.e., the deviation of the actual or average 

measurements from their true value) in the system’s stored and output quantitative 
data 

− Latent Defects – the degree to which the system is free from defects upon delivery 
− Precision – the degree of dispersion of the system’s stored and output quantitative 

data around their average values 
− Timeliness – the degree to which data remains current (i.e., up-to-date) 

• Defensibility – the degree to which a system or subsystem defends valuable assets from 
accidental or malicious harm (Defensibility can be classified into the quality factors: ro-
bustness, safety, security, and survivability.) 

 
                                                 
54 For example, the components have the same structure and communicate the same way via similar 

interfaces. 
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• Efficiency – the degree to which a system or subsystem effectively uses (i.e., minimizes 
its consumption of) its resources (e.g., bandwidth, CPU [central processing unit] cycles, 
storage, electricity) 

• Interoperability – the degree to which a system operates (i.e., collaborates and inter-
faces) effectively with specified [types of] external systems by successfully providing 
services and data to those systems and using services and data provided by those sys-
tems  

• Intraoperability – the degree to which subsystems within a system operate effectively 
with other subsystems within the system by successfully providing services and data to 
those subsystems and using services and data provided by those subsystems 

• Maintainability – the degree of ease55 with which a system or subsystem can be modi-
fied between major releases when not required by changes to requirements. Maintain-
ability can be classified into the quality factors: adaptive, corrective, perfective, and pre-
ventative maintainability. 

Quality subfactors of maintainability include 
− Analyzability – the degree of ease with which defects, deficiencies, and causes of 

failures can be diagnosed and localized to the components to be modified 
− Modifiability (aka, changeability) – the degree of ease with which a system or sub-

system can have specified types of changes made 
− Extensibility – the degree of ease with which a system or subsystem can be enhanced 

to meet specified future goals and significantly changing requirements 
− Scalability – the degree of ease with which a system or subsystem can be modified to 

increase its existing capacities 
− Verifiability – the degree of ease with which changes to a system or subsystem can be 

verified as having been correctly made and to be without unexpected and undesirable 
side-effects 

• Operational Environment Compatibility – the degree to which a system or subsystem 
can be used and functions correctly under specified conditions of the physical environ-
ment in which it is intended to operate 

• Performance – the degree to which a system or subsystem operates within its desig-
nated temporal constraints 

Quality subfactors of performance include 
− Jitter – the degree to which the variability of the time intervals between system con-

trolled periodic actions remains within its designated constraints 

                                                 
55 The phrase “the degree of ease” refers to the amount of effort required to do something, whereas 

the phrase “the degree to which” refers to the extent to which something occurs. The difference 
between these two phrases determines the type of scale of measure used to set the threshold on the 
associated quality requirements. 
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− Latency – the degree to which the time that the system or subsystem takes to execute 
specific tasks (e.g., system operations and use case paths) from end to end is within 
acceptable time limits 

− Response Time – the degree to which the time it takes for the system or subsystem to 
initially respond to a client request for a service is within acceptable time limits 

− Schedulability – the degree to which events and behaviors are deterministic and can 
be accurately scheduled 

− Throughput – the degree to which the system is able to complete an operation and 
provide a service within acceptable time limits 

• Portability – the degree of ease with which a software system or subsystem can be 
moved to specified [types of] hardware (e.g., server) or software (e.g., operating system 
or middleware) environments 

• Predictability – the degree to which the behavior of a system or subsystem is determi-
nistic (i.e., predictable) for a given set of inputs when in a given state and/or environ-
ment 

• Producibility – the degree of ease with which a system or subsystem can be produced 
(e.g., manufactured) to meet its requirements 

• Reliability (aka, continuity) – the degree to which a system or subsystem continues to 
function without failure in one or more specified ways during a specified period of time 
under normal conditions or circumstances 

• Reusability 
− Architect with reuse – the degree to which the current system or subsystem architec-

ture enables externally produced components to be incorporated with little or no 
modification 

− Architect for reuse – the degree to which components currently being produced are 
enabled to be incorporated with little or no modification into the architecture of other 
specified systems 

• Robustness – the degree to which a system or subsystem tolerates potentially harm-
causing events or conditions and recovers from them 

Quality subfactors of robustness include 
− Tolerance – the degree to which a system or subsystem tolerates potentially harm-

causing events or conditions 
− Environmental Tolerance – the degree to which essential mission-critical services 

continue to be provided in spite of potentially harm-causing environmental condi-
tions (e.g., salt spray causing corrosion or radiation randomly changing the value 
of a bit within memory) 

− Error Tolerance – the degree to which essential mission-critical services continue 
to be provided in spite of the presence of erroneous input (e.g., incorrect, stale, or 
out-of-order data). Note that erroneous input is typically due to human error, al-
though it may also be due to sensor failure, timing delays, etc. 
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− Fault Tolerance – the degree to which essential mission-critical services continue 
to be provided in spite of the presence or execution of defects, whereby a defect 
(aka, fault and bug) is an underlying flaw in a work product (i.e., a work product 
that is inconsistent with its requirements, policies, goals, or the reasonable expec-
tations of its customers or users). Note that a defect may or may not cause a failure 
depending on whether or not the defect is executed and whether or not exception 
handling prevents the failure from occurring. 

− Failure Tolerance – the degree to which the system continues to provide essential 
mission-critical services in spite of the occurrence of failures, whereby a failure is 
the execution of a defect that causes an inconsistency between an executable work 
product’s actual (i.e., observed) and expected (e.g., specified) behavior. 

− Fail Safety – the degree to which the system places itself into a safe operating 
mode in the event of specific failures 

− Fail Security – the degree to which the system places itself into a secure operating 
mode in the event of specific failures 

− Fail Softness – the degree to which the system continues to provide partial opera-
tional capabilities (possibly in a degraded mode) in the event of specific failures 

− Incident Tolerance – the degree to what a system or subsystem continues to provide 
essential mission-critical services in spite of the occurrence of incidents 
− Safety Incident Tolerance – the degree to which a system or subsystem continues 

to provide essential mission-critical services in spite of the occurrence of safety in-
cidents (e.g., accidents and near misses) 

− Security Incident Tolerance – the degree to which a system or subsystem continues 
to provide essential mission-critical services in spite of the occurrence of security 
incidents (e.g., security attacks and probes)  

− Survivability Incident Tolerance – the degree to which a system or subsystem con-
tinues to provide essential mission-critical services in spite of the occurrence of 
survivability incidents (e.g., military attacks) 

− Recoverability – the degree to which a system or subsystem recovers from a failure 
− Functionality Recoverability – the degree to which a system or subsystem reestab-

lishes its prior level of functionality after a failure 
− Data Recoverability – the degree to which a system or subsystem recovers data di-

rectly affected by a failure 
− Recovery Effort – the amount of effort and time needed to reestablish a system or 

subsystem’s functionality and to recover any data that has been directly affected by 
a failure 

• Soundness – the degree to which a system or subsystem is sound. Soundness can be 
classified into the quality factors: availability, correctness, predictability, and reliability. 

• Safety – the degree to which 
− a system or subsystem prevents or reduces in probability or severity, detects, reacts 

to, and adapts to 
− accidental (i.e., unplanned and unintended but not necessarily unexpected) harm to 

valuable assets  
− safety incidents (i.e., accidents and near misses) 
− hazards (i.e., unsafe conditions) 

− safety risks associated with the system or subsystem are acceptably low 
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• Security – the degree to which 
− a system or subsystem prevents or reduces in probability or severity, detects, reacts 

to, and adapts to 
− malicious (i.e., unplanned and unintended but not necessarily unexpected) harm to 

valuable assets caused by attackers 
− security incidents (i.e., attacks and probes) 
− threats (i.e., existence of attackers with means, motives, and opportunities) 

− security risks associated with the system or subsystem are acceptably low 
• Stability – the degree to which a system or subsystem continues to deliver mission-

critical services during a given time period56 under a given operational profile regard-
less of any failures whereby the 
− failures may prevent the system from delivering less critical services 
− failures limiting the delivery of mission-critical services occur at unpredictable times 
− root causes of such failures are difficult to identify efficiently 

• Sustainability – the degree of ease with which a system or subsystem can be supported 
once placed into use (i.e., fielded into its operational environment) 

• Testability – the degree of ease with which a system or subsystem facilitates the crea-
tion and execution of successful tests (i.e., tests that cause failures due to underlying de-
fects57)  

Quality subfactors of testability include 
− Controllability – the ease with which the system can be  

− placed into the proper pretest state 
− stimulated with the test message or data 

− Observability – the ease with which the system can be observed to 
− be in the proper pretest state 
− provide the proper output to its clients, peers, and servers (e.g., returned values, 

output messages, output requests for data) 
− in the proper posttest state 

• Usability – the degree to which the system’s human user interface enables a specified 
group of users achieve specified goals in a specified context of use 

 

 

                                                 
56 Stability is a type of reliability. Whereas reliability is typically measure in terms of mean time 

between failures (MTBF), stability is typically measured in terms of mean time between mission-
critical failure (MTBMCF). Stability is closely related to robustness, which is a type of defensibil-
ity. Whereas robustness refers to how well a system defends itself in terms of its tolerance of nega-
tive events and conditions and in terms of its recoverability once failure occurs, stability refers to 
how often mission-critical failures occur.  

57 See http://www.opfro.org/Glossary/GlossaryF.html for definition of “failure.” 
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Quality subfactors of usability include 
− Attractiveness (aka, engagability, preference, and stickiness58) – the degree to which 

users find the system to 
− be attractive or appealing 
− engage their attention 
− provide a positive user experience 
− be preferable to its alternatives 
− make them to continue to use it 
− make them return to use it in the future 

− Credibility (aka, trustworthiness) – the degree to which users are confident with and 
have trust in the system including that its 
− output and behavior are correct 
− content is authoritative 
− owner’s motives are trustworthy 
− developers are competent 

− Differentiation – the degree to which the system differentiates itself from competing 
products 

− Ease to Entry – the ease with which users can start using the system (e.g., can log on 
and begin using their desired functionality without waiting an excessive amount of 
time to be identified, authenticated, and navigate to the point where they can start 
performing their tasks) 

− Ease of Location – the ease with which users can find the system’s content or ser-
vices (e.g., finding Web applications such as Web sites using search engines) 

− Ease of Remembering – either the degree to which occasional users can remember 
how to use the system to perform common tasks or the degree to which regular users 
to can remember how to use the system to perform infrequent tasks 

− Effectiveness (aka, operability) – the degree to which the system its enables users to 
successfully achieve their goals 

− Error Minimization – the degree to which the system minimizes the number of errors 
that its users make 

− Learnability – the degree to which representative users can learn to use the system to 
achieve their goals (e.g., to find desired content and to perform their tasks) 

− Navigability – the degree to which the product enables users to easily move through 
the user interface or documentation to achieve their goals 

− Operability – the degree to which the system minimizes the amount of effort users 
(and operators) must expend to achieve their goals (in relation to the accuracy and 
completeness with which these goals are achieved)  

− Retrievability – the ease with which the product enables users to obtain information 
in a form that is useful to them (e.g., print out a paper report, make a copy of a mul-
timedia file) 

                                                 
58 The term “stickiness” is typically used with reference to Web pages and refers to how long users 

remain at (i.e., remain stuck to) given Web pages. 
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− Suitability (aka, appropriateness) – the degree to which users find that the product to 
be suitable for the performance of their tasks 

− Understandability – the degree to which users find the system’s human interfaces and 
output to be clear, legible, unambiguous, and comprehensible (especially during un-
usual situations) 

− User-Satisfaction – the degree to which users are satisfied with the product and con-
sider it to be beneficial to them 

C.3 Quality Requirements 
Having quality requirements that themselves exhibit high quality is a critical prerequisite for 
the production of a high-quality system architecture that sufficiently supports the systems’ 
meeting of these quality requirements. Building on Figure 20, which illustrates the structure 
of a quality model in terms of its quality factors, quality subfactors, and quality measures, 
this subsection defines quality requirements and shows how they relate to the components of 
the quality model. 

As illustrated in Figure 22, a quality requirement consists of a three main parts. 
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Figure 22: Components of a Quality Requirement 
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• Condition 

An optional condition that states under what conditions the quality requirement must be 
met. For example, quality requirements specifying high performance and reliability may 
only hold during normal conditions, but not under degraded mode operations. 

• Quality Criterion 

A quality criterion is a system-specific description that provides evidence either for or 
against the existence of a given quality factor or subfactor.59 Quality criteria signifi-
cantly contribute toward making the high-level quality factors and subfactors detailed 
enough to be unambiguous and verifiable. When quality criteria are adequately specific, 
they lack only the addition of quality metrics to make them sufficiently complete and de-
tailed to form the basis for detailed quality requirements. If quality is the trunk of the 
tree and the quality factors and subfactors are the branches and twigs, then quality crite-
ria are the leaves. There are many more quality criteria than quality factors and subfac-
tors because there are typically numerous criteria per factor and subfactor. Quality crite-
ria are also more domain-specific and less reusable than quality factors and subfactors 
because they are specific descriptions of specific system and subsystems. To deal with 
the large number of criteria and to make them reusable, quality criteria can often be pa-
rameterized in the quality models, and specific instances of the parameterized classes of 
criteria can then be used to produce quality criteria. 

• Quality Threshold 

A quality threshold specifies a minimum level of quality along a quality measurement 
scale. Thus, the threshold is measured in units of measure based on the quality measure 
of the quality model for the quality factor or quality subfactors associated with the qual-
ity criteria of the quality requirement. For example, throughput performance require-
ments may specify a minimum acceptable quality threshold of a certain number of trans-
actions per second. Similarly, a reliability requirement may specify a minimum 
acceptable quality threshold of a certain mean time between failures (MTBF). 

Perhaps the most important thing to remember about quality requirements is that all 
should have clearly stated quality thresholds. Without quality thresholds, it is not a qual-
ity requirement but rather a vague, ambiguous quality goal that is therefore unverifiable. 
From a system architecture quality assessment standpoint, without quality requirements 
with associated quality thresholds, it is impossible for 
− system architects to properly make engineering tradeoffs between competing quality 

requirements 

                                                 
59 Under certain circumstances, a quality criterion may be related to more than one quality subfactor. 

For example, the quality criteria of defensibility requirements (e.g., safety, security, and surviv-
ability requirements) typically address both a defensibility problem subfactor (e.g., harm, danger, 
defensibility event, or risk) and a defensibility solution subfactor (e.g., prevention, detection, and 
reaction). Thus, a safety requirement may specify that a system must prevent accidental harm, de-
tect an accident, or react a specific way to the detection of an accident). 
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− system architects and system architecture assessors to know if the system architecture 
− sufficiently supports its derived and allocated quality requirements 
− is therefore good enough 

− assessors to unambiguously determine if the system architecture should pass the as-
sessment 
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Appendix D Example Checklists 

D.1 Example Subsystem Requirements Meeting 
Checklist 

The following questions can be used as a checklist during the preparation for and perform-
ance of a subsystem requirements meeting. 

D.1.1 Preparation for the Requirements Review Meeting 
The following questions concern preparation for the requirements review: 

1. Method Training 

Did the subsystem requirements team and the subsystem architecture team receive train-
ing in the latest version of the tailored system architecture quality assessment method? 

2. Quality Factors and Quality Subfactors 

Has the subsystem requirements team identified the relevant quality factors and subfac-
tors? 

3. Preparatory and Presentation Materials 
− Were necessary materials provided? 

− Did the subsystem requirements team and subsystem architecture team provide the 
necessary preparation and presentation materials to the assessment team?  

− Were these materials complete in the sense of documenting the quality goals and 
requirements as well as providing sample quality cases? 

− Was there sufficient lead time? 
Did the subsystem requirements team and subsystem architecture team provide the 
preparation and presentation materials to the assessment team with sufficient lead 
time so that the assessment team members could read these materials prior to the 
subsystem requirements review meeting? 

− Was relevant material indicated? 
Was the relevant information identified (e.g., highlighted or indexed) in a manner 
that it was easy for the assessment team to find? 

4. Assessment Team Preparation 

Did members of the assessment team read the preparatory and presentation materials 
provided by the subsystem requirements team and subsystem architecture team? 
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5. Meeting Organization 
− Have meeting attendees and stakeholders been identified?  
− Have the date, time, and location of the meeting been set?  
− Has an agenda been developed?  
− Have the intended meeting members been invited to the meeting?  
− Have other stakeholders been notified of the meeting? 

D.1.2 Quality Goals and Requirements  
The following questions concern the quality goals and requirements: 

1. Quality Goals 

For each relevant quality factor and subfactor, did the subsystem requirements team 
identify and derive a complete set of goals for the subsystem? 

2. Quality Requirements 

For each relevant quality factor and subfactor, did the subsystem requirements team 
identify and derive a complete set of quality requirements for the subsystem? 

3. Quality of the Quality Requirements 

Are the derived and allocated quality requirements correct, complete,60 consistent (with 
the associated quality goals), unambiguous, and verifiable? 

4. Requirements Trace 

Did the requirements team develop a complete requirements trace showing the deriva-
tion of the subsystem quality goals and requirements to their sources? 

5. Understanding of the Quality Goals and Requirements 

Did the architecture team adequately demonstrate their understanding of the quality 
goals and requirements? 

 

 

 

                                                 
60  Because QUASAR is an architecture quality assessment method rather than a requirements as-

sessment method, it is not intended that the requirements team provide a great deal of evidence to 
show correctness and completeness. The important thing is to be able to convince the assessment 
team that the requirements are unambiguous and verifiable so that the assessment team will be 
able to assess the architecture against these requirements and feel confident that the assessment 
team and the architecture team will be able to know whether or not the architecture adequately 
supports these requirements. 
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D.1.3 Sample Architecture  
The following questions concern the sample architecture: 

1. Planned Quality Case Arguments and Evidence 

Did the architecture team present a representative sample of the kind of quality case ar-
guments and evidence they intend to provide and present during the subsequent architec-
ture assessment meeting? 

2. Quality of Planned Arguments 
− Relevant Arguments? 

Did the architecture team present representative arguments that were relevant in the 
sense that the arguments were actual architectural decisions (e.g., architectural pat-
terns and mechanisms) rather than merely architectural plans and procedures (i.e., in-
tended ways for future development of the architecture)? 

− Clear and Compelling? 
Were the arguments clear and compelling to the assessors? 

− Rationales? 
Were rationales provided with each of the architectural decisions? 

3. Quality of Planned Evidence 
− Relevant Evidence? 

Did the architecture team provide relevant evidence (e.g., architecture documents, 
models, and diagrams that backed up their relevant arguments)? In other words, did 
the evidence show actual architectural decisions? 

− Adequate Evidence? 
Did the evidence back up all of the arguments? 

− Official Evidence? 
Is the evidence official project documentation under configuration management as 
opposed to temporary PowerPoint presentations developed just for the assessment? 

− Evidence Indicated? 
Did the architects identify the relevant information (e.g., by highlighting, indexing, 
or verbally during the presentation) amongst the potentially vast amount of eviden-
tiary documentation provided? 

4. Action Item List 
− Action Items Identified? 

Was the action item list updated based on action items identified during the subsys-
tem requirements review phase? 

− Assigned with Due Dates? 
Have actions been assigned with due dates? 

− Tracked to Completion? 
Are action items being tracked to completion? 

− Action Item List Maintained? 
Is the action item list being properly maintained as action items are completed? 
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D.1.4 Follow-Through Task 
The following questions concern the subsystem requirements review phase follow-through 
task: 

1. Outbrief given? 

At the end of the requirements review meeting, did the assessment team develop and 
present an adequate outbrief to the members of the subsystem requirements team, mem-
bers of the subsystem architecture team, and other interested stakeholders (e.g., manag-
ers and members of the top-level architecture team)? 

2. Meeting Minutes 
− Developed? 

Did the assessment team develop a complete set of minutes of the meeting? 
− Minutes Quality? 

Were the minutes reviewed for completeness and factual correctness? 
− Distributed? 

Were the minutes distributed to all relevant stakeholders? 
− Timeliness? 

Were the minutes developed, reviewed, and distributed within a reasonable time after 
the meeting? 

3. Lessons Learned 

Were lessons learned during the requirements review phase captured? Were these les-
sons learned used to update the assessment method and associated training materials? 

D.2 Example Architecture Assessment Checklist 
The following questions can be used as a checklist during the preparation for and perform-
ance of a subsystem architecture assessment meeting. 

D.2.1 Questions Concerning Preparation for the Meeting 
The following questions concern preparation for the architecture assessment meeting: 

1. Preparatory and Presentation Materials 
− Necessary Materials Provided? 

− Did the subsystem architecture team provide the necessary preparation and presen-
tation materials to the assessment team?  

− Were these materials complete in the sense of introducing the subsystem, review-
ing the derived and allocated quality requirements, introducing the subsystem ar-
chitecture, and documenting the quality cases? 
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− Sufficient Lead Time? 
Did the subsystem architecture team provide the preparation and presentation materi-
als to the assessment team with sufficient lead time so that the assessment team 
members could read these materials prior to the architecture assessment meeting? 

− Relevant Material Indicated? 
Was the relevant information identified (e.g., evidence highlighted or indexed) in a 
manner that it was easy for the assessment team to find? 

2. Assessment Team Preparation 

Did members of the assessment team read the preparatory and presentation materials 
provided by the subsystem architecture team? 

3. Requests for Information and Action 
− Did members of the assessment team create any RFIs and RFAs based on their read-

ing of the preparation and presentation materials?  
− Did these RFIs and RFAs get delivered to the subsystem requirements team with suf-

ficient lead time for them to prepare their responses before the subsystem assessment 
meeting? 

4. Meeting Organization 
− Have meeting attendees and stakeholders been identified?  
− Have the date, time, and location of the meeting been set?  
− Has an agenda been developed?  
− Have the intended meeting members been invited to the meeting?  
− Have other stakeholders been notified of the meeting? 

D.2.2 Initial Presentations  
The following questions concern the initial presentations made by the subsystem architecture 
team during the architecture assessment meeting: 

1. System Introduction 
− Did the subsystem architecture team provide the assessment team with an adequate 

introduction to the subsystem?  
− Did the presenters address the primary purpose of the subsystem, where it fits into 

the overall system architecture, its context in terms of the externals and other subsys-
tems with which it interoperates, and its primary functions? 

2. Requirements Review 
− Did the subsystem architecture team review the architecturally significant goals and 

requirements that have been derived and allocated to the subsystem?  
− Did the presenters identify the relative priorities of these goals and requirement types 

(and requirements where appropriate)? 

3. Architecture Introduction 
− Did the subsystem architecture team introduce their architecture to the members of 

the assessment team?  
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− Did they cover its major architectural components and their objectives?  
− Did they cover the major relationships between these architectural components?  
− Did they provide an overview of their most important architectural decisions (e.g., 

choice of architectural styles, patterns, and mechanisms) and their associated ration-
ales?  

− Did they describe the major engineering tradeoffs that they made between conflicting 
quality factors? 

4. Quality Cases 
− Did the subsystem architecture team present their quality cases to the assessment 

team? 
− Did they cover all of the relevant important quality factors and quality subfactors 

given the time constraints of the meeting? 
− Claims? 

o Did the subsystem architecture team make appropriate claims given the qual-
ity goals and requirements?  

o Did these claims include requirements, or only goals?  
o Were the requirements claims unambiguous in terms of specific, quantified 

quality requirements? 
− Arguments? 

o Did the subsystem architecture team provide arguments as to why the as-
sessment team should believe their claims?  

o Where these arguments clear and compelling?  
o Were the arguments stated in terms of specific architectural decisions and as-

sociated rationales?  
o Did the architects use standard architectural styles, patterns, and mecha-

nisms?61 
o Were their decisions appropriate given the architecturally significant re-

quirements and other architectural constraints?  
o Were the rationales credible? 

− Evidence? 
o Was the evidence in the form of official project documents or assessment 

team witnessed demonstrations?  
o Was relevant information identified (e.g., evidence highlighted or indexed) 

in a manner that it was easy for the assessment team to find?  
o If asked for more specific evidence, could the architects easily find and dis-

play it? 

                                                 
61  This checklist can be augmented with standard quality-factor specific architecture decisions, but 

experience has shown that it is usually best left to separate training material, as its inclusion makes 
the checklist too long and unwieldy for use during assessment meetings. 
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5. Probe Architecture 
− Did the assessment team adequately probe the architecture to identify weaknesses 

and defects not brought out in the subsystem architecture team’s quality cases?  
− Were the subsystem architecture team members able to satisfactorily answer all as-

sessment team questions?  
− Were deep dives needed in any areas of the subsystem architecture?  
− Were scenarios needed to exercise the architecture? 

6. Action Item List 
− Action Items Identified? 

Was the action item list updated based on action items identified during the subsys-
tem architecture assessment phase? 

− Assigned with Due Dates? 
Have actions been assigned with due dates? 

− Tracked to Completion? 
Are action items being tracked to completion? 

− Action Item List Maintained? 
Is the action item list being properly maintained as action items are completed? 

D.2.3 Follow-Through Task 
The following questions concern the subsystem architecture assessment phase follow-through 
task: 

1. Outbrief given? 

At the end of the subsystem architecture assessment meeting, did the assessment team 
develop and present an adequate outbrief to the members of the subsystem architecture 
team, and other interested stakeholders (e.g., managers and members of the top-level ar-
chitecture team)? 

2. Meeting Minutes 
− Developed? 

Did the assessment team develop a complete assessment report? 
− Minutes Quality? 

Was the assessment report reviewed for completeness and factual correctness? 
− Distributed? 

Was the assessment report distributed to all relevant stakeholders? 
− Timeliness? 

Were the assessment report developed, reviewed, and distributed within a reasonable 
time after the meeting? 

3. Lessons Learned 
− Were lessons learned during the subsystem architecture assessment phase captured? 
− Were these lessons learned used to update the assessment method and associated 

training materials? 
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Appendix E Example Quality Cases 

For each relevant quality factor (e.g., availability), the associated quality case consists of the 
following three sets of related information: 

1. Claims  
A claim is an architect’s assertion that his or her architecture adequately supports the as-
sociated type of quality goal or requirements (e.g., availability requirements). These 
claims should list62 and/or summarize the specific, relevant quality requirements.  

2. Arguments 
An argument is one of an architect’s reasons why the assessors should believe his or her 
associated claims. Essentially, the architects present clear and compelling arguments list-
ing the specific architectural decisions that they have made (and documented) to ensure 
that the system will achieve a sufficient level of the associated type of quality (e.g., 
availability). 

3. Evidence 
Evidence is the documentation that is provided by the architects to convince the asses-
sors of the validity of the arguments. Typical examples of appropriate evidence consists 
of official project documentation including architectural diagrams, architectural models, 
architectural documents, architectural white papers, and architectural training materials. 
Documentation of architecture drivers (e.g., architecturally significant requirements, as-
sociated use cases) and the architects’ intent (e.g., architectural plans, architectural pro-
cedures, or architecture team charters) is not adequate because it documents neither the 
current state of the architecture nor the actual architectural decisions. Valid evidence can 
also consist of demonstrations during which the assessors directly witness the incorpora-
tion of architectural decisions; for example, the assessors can observe the incorporation 
of redundant hardware into an executable hardware prototype during a tour of a devel-
opment or testing laboratory. 

The following sections of this appendix contain architectural quality cases that are general 
examples of the kind of claims, arguments, and evidence that architects might present to as-
sessors. These examples have been highly generalized and are not taken from any particular 
                                                 
62 It is insufficient to merely list requirements identifiers (e.g., numbers) because this makes it very 

difficult for assessors to understand the relevant requirements. If requirements management tools 
are used to assign specific quality factors as attributes to the associated quality requirements and 
to trace such requirements to architectural elements, then it becomes practical to select all quality 
requirements of a specific type allocated to a specific subsystem and therefore automatically gen-
erate the associated claims (assuming that the subsystem adequately supports its allocated quality 
factors). 
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acquisition or development project. Any relationship to any particular project is purely coin-
cidental. 

E.1 Example Interoperability Cases 
Interoperability is the degree to which a system (or subsystem) operates effectively with 
specified [types of] external systems by successfully providing services and data to those sys-
tems and using services and data provided by those systems. 

Interoperability is decomposed into the following subfactors: 

• Physical Interoperability 
Physical interoperability is the degree to which the system or subsystem physically con-
nects with specified [types of] interfaces with specified [types of] external systems. 
Physical interoperability includes matching the 
− Electrical Connections – electrical plug type, power rating, number and configura-

tions of prongs, male versus female connection, and so on 
− Electronic Connections – number and configuration of pins, male versus female con-

nection, and so on 
− Physical Connections – size and shape of surfaces as well as the number, type, orien-

tation, and size of physical connectors such as bolts and screws 
− Power Connections – cable, chain, and hose 

• Energy Interoperability 
Energy interoperability is the degree to which the system or subsystem correctly uses the 
energy types and levels of the specified [types of] external systems. Energy interopera-
bility includes 
− Hydraulics – fluid type, maximum and minimum pressures, and so on 
− Mechanical Linkages – linkage type (e.g., belt, cable, or chain) and average and 

maximum force 
− Wired Communication – proper logic voltages, frequency, and amperage of electric-

ity such as logic low level (0–1 volts), logic high level (3.5–5.0 volts), 40 megahertz 
(MHz), and 100 milliamps 

− Wired Power – proper voltages including ranges, AC (alternating current) frequency 
including ranges, and maximum amperage of electricity such as 120 volts AC or 270 
VDC (volts of direct current) (250–280 VDC), 60 hertz, and 100 milliamps or 150 
kilowatts maximum 

− Wireless Communication 
Wireless communication energy operability includes 
− proper electromagnetic frequency (e.g., proper spectrum of radio waves, micro-

waves, or visible light) such as 1850–1990 MHz microwaves for cellular telephone 
transmission or C-band for satellite transmission 

− broadcast or laser 
− minimum/maximum signal strength 
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• Protocol Interoperability 
Protocol interoperability is the degree to which the system or subsystem correctly uses 
the interface protocols of the specified [types of] external systems. Protocol interopera-
bility includes compatibility of protocols at the following layers: 
− Physical Layer Protocols – Layer 1 protocols such as Integrated Services Digital 

Network (ISDN) and RS-232 
− Data Link Layer Protocols – Layer 2 protocols such as Ethernet, Fiber Distributed 

Data Interface (FDDI), and Point-to-Point Protocol (PPP) 
− Network Layer Protocols – Layer 3 protocols such as Internet Control Message Pro-

tocol (ICMP) and Internet Protocol (IP) 
− Transport Layer Protocols – Layer 4 protocols such as Transmission Control Protocol 

(TCP) and User Datagram Protocol (UDP) 
− Session Layer Protocols – Layer 5 protocols such as Network File System (NFS) 
− Presentation Layer Protocols – Layer 6 protocols such as American Standard Code 

for Information Interchange (ASCII), Moving Picture Experts Group (MPEG), and 
Secure Socket Layer (SSL) 

− Application Layer Protocols – Layer 7 protocols such as Domain Name Service 
(DNS), File Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP), and Hy-
pertext Transfer Protocol Secure (HTTPS) 

• Syntax Interoperability 
Syntax interoperability is the degree to which the system or subsystem correctly com-
municates data having the correct syntax (e.g., data types such as text, integer, date, and 
money including associated attributes, ranges, and default values) with specified [types 
of] external systems. 

• Semantics Interoperability 
Semantics interoperability is the degree to which the system or subsystem communicates 
requests and data via specified [types of] interfaces of the specified [types of] external 
systems in a manner that both systems interpret the syntax in a single standard way to 
gain the same meanings. Semantic interoperability includes such things as units of 
measure (e.g., differentiating between English and metric units or differentiating be-
tween Canadian and United States currency). 

Sections E.1.1 and E.1.2 include example interoperability cases for the physical interoperabil-
ity and protocol interoperability quality subfactors of interoperability, respectively. 

As illustrated in Figure 23, an interoperability case consists of one or more interoperability 
claims, the belief in which is justified by one or more interoperability arguments supported 
by one or more pieces of interoperability evidence. 
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Figure 23: Components of an Architecture Interoperability Case 

Figure 24 is an example interoperability quality case diagram showing the relationships be-
tween the different types of interoperability claims, arguments, and evidence. 
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Figure 24: Example Interoperability Quality Case Diagram 
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E.1.1 Example Physical Interoperability Case 
As an interoperability subfactor, physical interoperability is the degree to which the system 
or subsystem physically connects with specified [types of] interfaces with specified [types of] 
external systems. Physical interoperability includes matching the 

• Electrical Connections – electrical plug type, power rating, number and configurations 
of prongs, male versus female connection, and so on 

• Electronic Connections – number and configuration of pins, male versus female con-
nection, and so on 

• Physical Connections – size and shape of surfaces as well as the number, type, orienta-
tion, and size of physical connectors such as bolts and screws 

• Power Connections – cable, chain, and hose 

The example physical interoperability case is made up of the claims, arguments, and evidence 
presented in Sections E.1.1.1, E.1.1.2, and E.1.1.3, respectively. 

E.1.1.1 Example Physical Interoperability Claims 

The example physical interoperability case includes the following example claims: 

• Goals 
− Architecture Supports Physical Interoperability Goal 

Claim: The architecture adequately supports the system or subsystem’s ability to 
physically interoperate with external systems. 

• Requirements 
− Architecture Supports Physical Interoperability Requirements 

Claim: The architecture adequately supports the system or subsystem’s ability to 
meet the following derived physical interoperability requirements that have been al-
located to it: 
− “Subsystem X shall have dimensions 42 cm by 55 cm by 100 cm and attach to sys-

tem Y with attachment types and locations as indicated in table Z.” 

E.1.1.2 Example Physical Interoperability Arguments 

The example physical interoperability case includes the following example arguments cover-
ing the architectural decisions the architects have made to justify the assessors’ belief in the 
associated claims: 

• One-Way Connections 
Architectural Decision: The system or subsystem architecture uses unique asymmetric 
electric, electronic, and physical connections between it and external systems. 
Rationale: By using direction and conformation to ensure that connections can only 
work one way, it becomes impossible to make incorrect connections. 
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• Fly-By-Wire 
Architectural Decision: The system or subsystem architecture uses electronic rather than 
hydraulic connections. 
Rationale: Electronic connections produce higher reliability. 

• Modularity with Minimal Cohesion 
Architectural Decision: The system or subsystem architecture is highly modular with 
minimal cohesion between components. 
Rationale: High modularity allows architectural elements (modules) to be allocated to 
handle interoperation with external systems. Minimizing cohesion decouples these inter-
facing modules from the rest of the architecture. 

E.1.1.3 Example Physical Interoperability Evidence 

The example physical interoperability case includes the following acceptable example evi-
dence that could be supplied by the architects to support their associated arguments: 

• Context Diagram  
The context diagram shows the external systems or hardware components with which 
the system or subsystem physically interoperates. 

• Configuration Diagram 
The configuration diagram shows the hardware components that physically interoperate.  

• Hardware Diagrams 
Hardware diagrams show the physical connections between hardware components that 
physically interoperate. 

• Interoperability White Paper 
The interoperability white paper describes how physical interoperability is implemented 
including how it is supported by the architecture. 

• Wiring Diagrams 
Wiring diagrams show how physical components are physically connected together. 

E.1.2 Example Protocol Interoperability Case 
As an interoperability subfactor, protocol interoperability is the degree to which the system 
or subsystem correctly uses the interface protocols of the specified [types of] external sys-
tems. 

The example protocol interoperability case is made up of the claims, arguments, and evidence 
presented in Sections E.1.2.1, E.1.2.2, and E.1.2.3, respectively. 

E.1.2.1 Example Protocol Interoperability Claims 

The example protocol interoperability case includes the following example claims: 
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• Goals 
− Architecture Supports Protocol Interoperability Goals 

Claim: The architecture adequately supports the system or subsystem’s ability to 
achieve the following derived protocol goals that have been allocated to it: 
− “The system or subsystem shall correctly use the interface protocols of all relevant 

external systems.” 
− “The system or subsystem shall use open interface standards (i.e., industry stan-

dard protocols) when communicating with external systems.” 

• Requirements 
− Architecture Supports Protocol Interoperability Requirements 

Claim: The architecture adequately supports the system or subsystem’s ability to 
meet the following derived protocol interoperability requirements that have been al-
located to it: 
− “The system or subsystem shall use open interface standards (i.e., industry stan-

dard protocols) when communicating with external systems across all key inter-
faces identified in document X.” 

− “The system or subsystem shall use the Ethernet over RS-232 for communication 
across interface X with external system Y.” 

− “The system shall use HTTPS for communicating securely when performing func-
tion X across interface Y with external system Z.” 

E.1.2.2 Example Protocol Interoperability Arguments 

The example protocol interoperability case includes the following example arguments cover-
ing the architectural decisions the architects have made to justify the assessors’ belief in the 
associated claims: 

• Layered Architecture 
Architectural Decision: The system architecture will consist of the following horizontal 
layers including: 
− Interface Layer, which contains software for communication with human users and 

external systems 
− Application Process Layer, which contains and hides application-level processes and 

transactions 
− Business Layer, which contains and hides business rules and business objects 
− Persistence Layer, which contains and hides system-specific databases 
− Legacy Layer, which provides proxies for legacy applications and databases 
Rationale: A layered architecture contains, logically groups, separates, and hides differ-
ent parts of the system. The interface layer supports interoperability with external sys-
tems, whereas the legacy layer supports interoperability with legacy systems. 

• Modular Architecture 
Architectural Decision: The system architecture will consist of a relatively large number 
of small, cohesive, modular subsystems and sub-subsystems with their implementations 
hidden behind well-defined interfaces. 

202  CMU/SEI-2006-HB-001 



 

Rationale: Using a highly modular architecture will support the creation of modules that 
act as local proxies for the external systems with which the system must interoperate. As 
such, they will act as wrappers that hide the external interfaces.  

• Proxies and Wrappers 
Architectural Decision: For each external client and server system with which the sys-
tem must interoperate, the system architecture will include one module that act as a 
proxy for that external system. The proxy model will act as a wrapper hiding the inter-
faces to the external system.  

Rationale: Proxies localize and wrap all information about the external interfaces, mak-
ing it easier to change them.  

• Service-Oriented Architecture (SOA) 
Architectural Decision: The system architecture will be based on the SOA pattern to 
provide software as Web services over the Internet. It will use standard Web Services In-
teroperability Organization’s63 (WS-I) Basic Profile 1.0 consisting of the Extensible 
Markup Language (XML) Schema 1.0 and associated protocols: Simple Object Access 
Protocol (SOAP) 1.1, Web Services Description Language (WSDL) 1.1, and Universal 
Description, Discovery, and Integration (UDDI) 2.0. The system will register (i.e., pub-
lish) its services with a Web services directory so that clients of the system can bind and 
invoke (i.e., execute) the services. 

Rationale: Interoperability and portability are the primary principles underlying the SOA 
pattern. Use of standard languages and protocols enable interoperability between hetero-
geneous systems. Web services are software components with well-defined interfaces 
that hide their implementation technologies. Web services are self-contained, loosely 
coupled, and dynamically discovered. 

E.1.2.3 Example Protocol Interoperability Evidence 

The example protocol interoperability case includes the following acceptable example evi-
dence that could be supplied by the architects to support their associated arguments: 

• Context Diagram 
The context diagram shows the context of the system in terms of the external systems 
with which it must interoperate. It therefore identifies and names the interfaces to these 
external systems. It potentially provides evidence of the open interface standards used 
on these external interfaces by identifying the type of interface and listing its protocol. 

• Configuration Diagram 
The configuration diagram shows the aggregation hierarchy of the system in terms of its 
subsystems, their subsystems, and so on. It therefore provides evidence of the 
− modularity of the system’s architecture 
− existence of the architectural components that 

                                                 
63 For more information, visit http://www.ws-i.org/. 
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− act as proxies for (or wrappers around) external systems 
− provide Web services 

• Allocation Diagram 
The allocation diagram shows the allocation of data and software components to the 
hardware components of the system architecture. It therefore provides some evidence of 
the modularity of the system architecture. 

• Layer Diagram 
The layer diagram identifies the horizontal layers of software that make up the system 
and implicitly shows the limitation of internal interfaces between these layers. It there-
fore provides clear and direct evidence that a layered architecture pattern was used. 

• Activity/Collaboration Diagram (treating subsystems as objects) 
Activity and collaboration diagrams show the interactions between the classes that make 
up the system. When used as architecture diagrams, the classes represent subsystems, 
sub-subsystems, and so on. These diagrams therefore provide evidence of the 
− names and locations of proxies and wrappers 
− services of the SOA and how they are accessed and used 

• Interoperability White Paper 
The interoperability white paper documents architectural styles, patterns, and mecha-
nisms used to achieve protocol interoperability. 

• Vendor-Supplied Technical Documentation 
Vendor-supplied technical documentation documents commercial off-the-shelf (COTS) 
product support for standard SOA protocols including XML, SOAP, WSDL, and UDDI. 

E.2 Example Performance Cases 
Performance is the degree to which a system or subsystem operates within its designated 
temporal constraints. The quality subfactors of performance include jitter, latency, response 
time, schedulability, and throughput. 

Sections E.2.1 and E.2.2 include example performance cases for the jitter and latency quality 
subfactors of performance, respectively. 

As illustrated in Figure 25, a performance case consists of one or more performance claims, 
the belief in which is justified by one or more performance arguments supported by one or 
more pieces of performance evidence. 
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Figure 25: Components of a Performance Case 

Figure 26 is an example performance quality case diagram showing the relationships between 
the different types of performance claims, arguments, and evidence. 
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Figure 26: Example Performance Quality Case Diagram 
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E.2.1 Example Jitter Performance Case 
As a performance subfactor, jitter is the degree to which the variability of the time intervals 
between controlled periodic actions remains within its designated constraints.  
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Figure 27: Example Jitter Quality Case Diagram 
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The example jitter performance case is made up of the claims, arguments, and evidence pre-
sented in Sections E.2.1.1, E.2.1.2, and E.2.1.3, respectively. 

E.2.1.1 Example Jitter Claims 

The example jitter performance case includes the following example claims: 

• Goals 
− Architecture Supports Jitter Goal 

Claim: The architecture adequately supports the system or subsystem’s ability to con-
strain jitter to acceptable limits. 

• Requirements 
− Architecture Supports Jitter Requirements 

Claim: The architecture adequately supports the system or subsystem’s ability to 
meet the following derived jitter requirement that has been allocated to it: 
− “The robotic surgery system shall control the blade actuator input/output (I/O) 

with a jitter of less than one tenth of a millisecond.” 

E.2.1.2 Example Jitter Arguments 

The example jitter performance case includes the following example arguments covering the 
architectural decisions the architects have made to justify the assessors’ belief in the associ-
ated claims: 

• Real-Time Operating System (OS) 
Architectural Decision: The system architecture incorporates a proprietary COTS real-
time operating system from a well-established vendor. 

Rationale: The real-time OS comes with the needed device drivers and with design tools 
that engineers have been trained to use. It also comes with deterministic, real-time re-
source management including jitter management on I/O. 

• COTS HW I/O Timer Board 
Architectural Decision: The system architecture incorporates a COTS hardware I/O 
board with sufficient channels, timer resolutions, and on-board buffer size to handle the 
required traffic jitter requirement. 

Rationale: The server processor board does not have adequate time resolution to handle 
the jitter requirements.  

E.2.1.3 Example Jitter Evidence 

The example jitter performance case includes the following acceptable example evidence that 
could be supplied by the architects to support their associated arguments: 
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• Architecture Document  
The architecture document provides a high-level overview the system architecture’s in-
corporation of a 
− real-time operating system 
− COTS I/O Timer Board 

• Product Technical Documentation  
The vendors’ product technical documentation documents the 
− real-time operating system technical characteristics 
− COTS I/O Timer Board technical characteristics 

• Product Trade Studies  
Product trade studies document the 
− real-time operating system technical characteristics (operating system trade study) 
− COTS I/O Timer Board technical characteristics (timer board trade study) 

• Performance White Paper 
The performance white paper provides a detailed analysis of the system architecture’s 
incorporation of (and rationale for) 
− real-time operating system 
− COTS I/O Timer Board 

• System Object Model 
The system object model identifies the real-time operating system and possibly also the 
COTS I/O Timer Board as system objects and the relationships between them and other 
system objects. 

• Allocation Diagram 
The allocation diagrams document how the real-time operating system is allocated onto 
the selected hardware. 

• Hardware Block Diagram 
The system hardware block diagrams show how the COTS I/O Timer Board is con-
nected to other hardware components. 

E.2.2 Example Latency Performance Case 
As a performance subfactor, latency is the degree that the time that the system or subsystem 
takes to execute specific tasks (e.g., system operations and use case paths) from end-to-end is 
within acceptable limits. 
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Figure 28: Example Latency Quality Case Diagram 

The example latency performance case is made up of the claims, arguments, and evidence 
presented in Sections E.2.2.1, E.2.2.2, and E.2.2.3, respectively. 

E.2.2.1 Example Latency Claims 

The example latency performance case includes the following example claims: 
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• Goals 
− Architecture Supports Latency Goal 

Claim: The architecture adequately supports the system or subsystem’s ability to con-
strain latency to acceptable limits. 

• Requirements 
− Architecture Supports Latency Requirements 

Claim: The architecture adequately supports the system or subsystem’s ability to 
meet the following derived latency requirements that have been allocated to it: 
− Hard Deadline Requirement 

“The Vat Subsystem shall send either a Vat Sensor Values message or a Sensor 
Data Unavailable message to the Production Control Subsystem once every 50 
milliseconds.” 

− Soft Deadline Requirement 
“The Vat Subsystem shall send Vat Sensor Values messages and Sensor Data Un-
available messages to the Production Control Subsystem in such a manner that Vat 
Sensor Value messages are not separated by more than four consecutive Sensor 
Data Unavailable messages.” 

E.2.2.2 Example Latency Arguments 

The example latency performance case includes the following example arguments covering 
the architectural decisions the architects have made to justify the assessors’ belief in the asso-
ciated claims: 

• Real-Time Operating System and Middleware 
Architectural Decision: The system architecture incorporates a proprietary COTS real-
time operating system from a well-established vendor. 

Rationale: The real-time operating system and middleware enables the use of rate-
monotonic scheduling, which will be used to support the meeting of the latency re-
quirements (see next). 

• Rate-Monotonic Scheduling (RMS) 
Architectural Decision: The system architecture requires that all subsystems having real-
time latency requirements incorporate COTS hardware, a real-time OS, and real-time 
middleware that either directly support RMS or permit the building of “scheduling” 
wrappers with sufficiently small schedulability penalties. 

Rationale: The architecture’s use of RMS not only helps the system to meet its latency 
requirements, it also supports end-to-end schedulability analysis to show during early 
development that these requirements can be met. RMS was also chosen because 
− All real-time traffic is either periodic or can be buffered and handled by periodic ser-

vices, a prerequisite for RMS. 
− RMS is supported by most hardware and software real-time standards and standards-

compliant COTS products. 
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− RMS is a mathematically sound method guaranteeing schedulability under the sys-
tem’s conditions. 

− The system traffic profiles can be handled by RMS. 

• Hardware Selection 
Architectural Decision: The system architecture incorporates N1 hardware clients of type 
HC1, N2 hardware servers of type HS2, N3 network devices of type ND3, N4 storage de-
vices of type SD4, and N5 networks of type N5

 .  64

Rationale: This selection of hardware devices provides the hardware capacity needed to 
achieve latency requirements under current workloads as well as providing adequate ca-
pacity to continue to meet latency requirements under future planned growth. This was 
determined in an iterative manner using schedulability analysis in light of current esti-
mates of subsystem workloads and communication patterns. 

• Software and Communications Allocation 
Architectural Decision: The system architecture allocates process P1 to node N1 and 
processes P2 and P3 to note N2, etc. The system architecture constrains node-to-node 
communication to message traffic pattern MTP1. 

Rationale: This allocation of processors to nodes keeps node workloads at shared re-
sources within their scheduling constraints. This constraint on communication traffic 
avoids communication bottle-necks, lowers message hop count by minimizing indirec-
tions, and thereby keeps the sum of delays incurred at shared resources low enough to 
meet end-to-end latency requirements. 

• Redundant Servers with Load-Balancing 
Architectural Decision: The system architecture incorporates load balancing of redun-
dant servers. 

Rationale: Load-balancing helps to minimize scheduling bottlenecks at nodes, which in 
turn helps the system meet its latency requirements. 

• Sampled Approach for Real-Time I/O 
Architectural Decision: The system architecture incorporates a sampled approach for all 
real-time I/O between its subsystems. 

Rationale: Using a sampled approach (combined with the production of software-
supporting fault tolerance) facilitates the system meeting its latency requirements even if 
an upstream node occasionally misses a deadline. This architectural approach is made 
possible because the subsystems have well-synchronized clocks with the required timing 
resolution. 

                                                 
64 In real life, the architects would provide actual hardware information including such details as 

number of I/O channels and network bandwidth. Workloads are based on projected usage and 
schedulability analysis. 
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E.2.2.3 Example Latency Evidence 

The example latency case includes the following acceptable example evidence that could be 
supplied by the architects to support their associated arguments: 

• Architecture Document 
The architecture document provides a high-level overview the system architecture’s in-
corporation of 
− real-time operating system and middleware 
− rate-monotonic scheduling 
− the selected hardware 
− redundant servers with load balancing 
− a sampled approach for real-time I/O 

• Product Technical Documentation 
The vendors’ product technical documentation documents the 
− real-time operating system and middleware used including its technical characteris-

tics 
− selected hardware including servers, storage, and network devices 

• Product Trade Studies 
Product trade studies document the 
− real-time operating system and middleware used including its technical characteris-

tics (software trade study) 
− selected hardware including servers, storage, and network devices (server trade study, 

storage trade study, and network trade study, respectively) 

• Performance White Paper 
The performance white paper provides a detailed analysis of the system architecture’s 
incorporation of (and rationale for) 
− real-time operating system and middleware 
− rate-monotonic scheduling 
− the selected hardware 
− redundant servers with load balancing 
− a sampled approach for real-time I/O 

• System Object Model 
The system object model identifies the real-time operating system, the real-time mid-
dleware, and the hardware components as system objects and the relationships between 
them. 

• Allocation Diagram 
The allocation diagrams document how the real-time operating system and middleware 
are allocated onto the selected hardware including the redundant servers. 

• Hardware Block Diagram 
The system hardware block diagram shows how the selected hardware components are 
connected including the redundant servers used for load balancing. 
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• Network Diagram 
The system network diagram shows how the selected hardware components are net-
worked including the redundant servers used for load balancing. 

• Timing Diagram 
The timing diagram documents how rate-monotonic scheduling is incorporated into the 
deterministic scheduling of frames. 

• Assessor-Witnessed Architecture Simulation 
The assessors witness a simulation of the executable architecture demonstrating that cer-
tain latency requirements are met under specific circumstances. 

E.3 Example Security Cases 
Security is the degree to which 

• a system or subsystem prevents or reduces in probability or severity, detects, reacts to, 
and adapts to 
− malicious (i.e., unplanned and unintended but not necessarily unexpected by legiti-

mate stakeholders) harm65 to valuable assets caused by attackers 
− security events (i.e., attacks and probes) 
− vulnerability to threats (i.e., existence of attackers with means, motives, and opportu-

nities) 
• security risks associated with the system or subsystem are acceptably low 

Note that the architecture of a system or subsystem may need to support requirements for the 
following subclasses of security: 

• Communications Security (COMSEC) 
COMSEC is the degree to which communications are protected from attack. 

• Computer Security (COMPUSEC) 
COMPUSEC is the degree to which computers are protected from attack. 

• Emissions Security (EMSEC or Tempest) 
EMSEC is the degree to which systems do not emit radiation that is subject to attack.  

• Information Security (INFOSEC) 
INFOSEC is the degree to which stored and manipulated data are protected from attack. 

                                                 
65 For example, information security is technically concerned with preventing and detecting the ma-

licious disclosure of sensitive identities, data, and communications during an attack, whereas 
safety is concerned with preventing and detecting their accidental disclosure during an accident. 
Note that both attacks and accidents can result in the same harm to valuable assets (i.e., to indi-
viduals, organizations, and their sensitive data) and that the architects can give the same argu-
ments as part of both safety and security cases because they can use the same architectural mecha-
nisms (controls) as both safeguards and countermeasures. 
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• Network Security (NETSEC) 
NETSEC is the degree to which networks are protected from attack. 

• Operations Security (OPSEC) 
OPSEC is the degree to which system operations are protected from attack. 

• Personal Security (PERSEC) 
PERSEC is the degree to which personnel are protected from attack. 

• Physical Security (PHYSEC) 
PHYSEC is the degree to which systems, data centers, and other facilities are protected 
from physical attack. 

As illustrated in Figure 29, a security case is a kind of quality case that consists of the follow-
ing three components: 

1. Security Claims 
Assertions made by the architects that the architecture of the system or subsystem being 
assessed sufficiently supports the achievement of its allocated and derived security-
related goals and requirements 

2. Security Arguments 
Adequate clear and compelling reasons to believe claims consisting of a listing of the ar-
chitects’ relevant architectural decisions (and associated rationales) that were made to 
ensure that the architecture sufficiently supports the achievement of its allocated secu-
rity-related requirements claim 

3. Security Evidence  
Sufficient evidence backing up the architects’ arguments consisting of official documen-
tation clearly indicating the architects’ relevant architectural decisions 

Security Case

Security 
Claim

Security 
Argument

Security 
Evidence

justifies belief in supports

Quality Case

 

Figure 29: Components of a Security Case 

A concern of presenting a security case is that the security claims (i.e., meeting security-
related requirements and constraints), arguments (aka, countermeasures), and evidence (e.g., 
documentation of countermeasures) may itself be highly sensitive (e.g., classified or highly 
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proprietary). Thus for example, only those members of the assessment team with the proper 
security clearances may be allowed to examine the security perspectives of the architecture. 
Although the task of assessing the security aspects of the architecture may be delegated to a 
security team that is responsible for verifying the system’s security, it is important that they 
include people adequately trained in system architecture and properly assess the system ar-
chitecture early during the development process. 

Security claims are stated in terms the relevant security-related requirements allocated to the 
system or subsystem, the architecture of which is being assessed. These requirements include 
security requirements, security-significant requirements (i.e., other requirements having sig-
nificant security ramifications), requirements of security subsystems, and security con-
straints.66 Security requirements in turn specify that the system or subsystem shall provide at 
least a minimum acceptable amount of security in terms of preventing, detecting, reacting to, 
and adapting to malicious harm to valuable assets,67 the occurrence of security events (probes 
and attacks), threats, and security risks. 

Sections E.3.1, E.3.2, E.3.3, and E.3.4 include example security cases for the access control, 
integrity, privacy, and security auditing subfactors of security, respectively. 

E.3.1 Example Access Control Security Case 
Access control is the degree to which a system or subsystem controls access by its externals 
(e.g., human users, external software applications, and external systems) to its data and soft-
ware components. Access control consists of 

• Identification 
Identification is the degree to which the system or subsystem establishes the claimed 
identities of externals (e.g., people, roles, systems) before allowing them to request and 
receive services (e.g., perform functions, obtain data). 

• Authentication 
Authentication is the degree to which the system or subsystem verifies the claimed iden-
tities of externals before allowing them to request and receive services (e.g., perform 
functions, obtain data). 

                                                 
66 A security constraint specifies a countermeasure as a requirement. Requirements engineers must 

take care not to tie the security architect’s hands by unnecessarily specifying a countermeasure 
(e.g., mandatory use of user IDs and passwords) instead of the underlying true requirement (e.g., 
that the system must adequately identify and authenticate its users). 

67 Valuable assets include people, property (e.g., data, hardware, software, and money), the environ-
ment, and services. Examples of harm to these assets include injury to people, access to or corrup-
tion of sensitive data, theft or corruption of hardware, infection of software, theft of money, and 
theft or denial of services. 
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• Authorization 
Authorization is the degree to which a system or subsystem properly grants and enforces 
access and usage privileges of authenticated externals. 

Figure 30 is an example quality case diagram summarizing the claims, arguments, and evi-
dence composing the example access control security case. 

Goal:
Architecture Supports Access Control

<<claim>>

Goal:
Architecture Supports 

Identification
<<claim>> 

Goal:
Architecture Supports 

Authentication
<<claim>> 

Architecture Decision:
Access Control Subsystem

<<argument>>

Configuration 
Diagram

<<evidence>>

Allocation 
Diagram

<<evidence>>

Network 
Diagrams

<<evidence>>

Activity or 
Collaboration 

Diagrams
<<evidence>>

Security 
Whitepaper

<<evidence>>

Access Control 
COTS

Trade Study
<<evidence>>

Vendor-Supplied 
Technical 

Documentation
<<evidence>>

Goal:
Architecture Supports 

Authorization
<<claim>> 

Requirements:
Architecture Supports 

Identification
<<claim>> 

Requirements:
Architecture Supports 

Authentication
<<claim>> 

Requirements:
Architecture Supports 

Authorization
<<claim>> 

justifies
belief in

support

Architecture Decision:
Biometrics Component

<<argument>>

 

Figure 30: Example Access Control Quality Case Diagram 
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The example access control security case is made up of the claims, arguments, and evidence 
presented in Sections E.3.1.1, E.3.1.2, and E.3.1.3, respectively. 

E.3.1.1 Example Access Control Claims 

The example access control security case includes the following example claims: 

• Goals 
− Architecture Supports Access Control 

Claim: The architecture adequately supports the system or subsystem’s ability to 
grant and restrict usage of sensitive services and access to sensitive data. 
− Architecture Supports Identification 

Claim: The architecture adequately supports the system or subsystem’s ability to 
identify users (i.e., human, external systems or applications, and other subsystems) 
before granting them usage of sensitive services and access to sensitive data. 

− Architecture Supports Authentication 
Claim: The architecture adequately supports the system or subsystem’s ability to 
verify the correctness of the claimed identities of users before granting them usage 
of sensitive services and access to sensitive data. 

− Architecture Supports Authorization 
Claim: The architecture adequately supports the system or subsystem’s ability to 
properly grant and enforce access and usage privileges of authenticated and identi-
fied users. 

• Requirements 
− Architecture Supports Identification Requirements 

Claim: The architecture adequately supports the system or subsystem’s ability to 
meet the following derived identification requirements that have been allocated to it: 
− “The system shall allow [members of user class X | client application Y] to per-

form [list of actions Z] before being successfully identified.”  
− “The system shall not allow [members of user class X | client application Y] to 

perform [any | list of actions Z] before being successfully identified.”  
− “When under attack, the system shall [detect | prevent] the use of forged identifica-

tion data.”  
− “When the system detects the use of forged identification data, then the system 

shall [list of actions X].”  
− “The system shall [detect | prevent] the reuse of identification data.”  
− “The system shall not require [members of user class X | client application Y] to be 

reidentified multiple times during a single session (i.e., single sign on).”  
− “The system shall reidentify [members of user class X | client application Y] under 

[list of conditions].”  
− “The system shall only provide the following feedback to [members of user class 

X | client application Y] during and as a result of identification.”  
− “The data center shall identify all personnel before allowing them to enter.”  
− “The name of the employee in the official human resource and payroll databases 

shall exactly match the name printed on the employee’s social security card.”  
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Rationale: This is an official requirement of the United States Social Security Ad-
ministration.  

− “The system shall support [list of identification mechanisms].”  
Note: This is a security constraint rather than a normal requirement. 

− “The system shall identify [user class X] according to [list of identification proc-
esses].” 
Note: This is also a security constraint. 

− Architecture Supports Authentication Requirements 
Claim: The architecture adequately supports the system or subsystem’s ability to 
meet the following derived authentication requirements that have been allocated to it: 
− “The system shall allow [member of user class X | client application Y] to perform 

[list of actions Z] before being successfully authenticated.”  
− “The system shall not allow [member of user class X | client application Y] to per-

form [any actions | list of actions Y] before being successfully authenticated.”  
− “When under attack, the system shall [detect | prevent] the use of any forged au-

thentication data.”  
− “When the system detects the use of forged authentication data, then the system 

shall [list of actions X].”  
− “The system shall [detect | prevent] the reuse of authentication data.” 
−  “The system shall reauthenticate [member of user class X | client application Y] 

under [list of conditions].”  
− “The system shall only provide the following feedback to [member of user class X 

| client application Y] during and as a result of authentication.”  
− “The system shall authenticate all of its users before allowing them to update their 

user information.”  
− “The system shall authenticate all of its users before accepting a credit card pay-

ment.”  
− “The system shall authenticate all of its client applications before allowing them to 

use its capabilities.”  
− “The data center shall verify the identity of all personnel before permitting them to 

enter.”  
− Architecture Supports Authorization Requirements 

Claim: The architecture adequately supports the system or subsystem’s ability to 
meet the following derived authorization requirements that have been allocated to it: 
− “The system or subsystem shall allow each customer to obtain access to all of his 

or her own personal account information.”  
− “The system or subsystem shall not allow any customer to access any account in-

formation of any other customer.”  
− “The system or subsystem shall not allow customer service agents to access the 

credit card information of customers.”  
− “The system or subsystem shall allow customer service agents to automatically 

email a new customer password to that customer’s email address.”  
Note: This authorization requirement is questionable because it contains an implied 
authentication constraint—the use of passwords as opposed other authentication 
mechanisms such as digital signatures.  
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− “The system or subsystem shall not allow customer service agents to access either 
the original or new customer password when emailing the new customer password 
to the customer’s email address.”  

− “The system or subsystem shall limit remote users to the following services: [list 
of services].”  

−  “The system or subsystem shall not allow one or more users to successfully use a 
denial of service (DoS) attack to flood it with legitimate requests of service.” 

E.3.1.2 Example Access Control Arguments 

The example access control security case includes the following example arguments covering 
the architectural decisions the architects have made to justify the assessors’ belief in the asso-
ciated claims: 

• Access Control Subsystem  
Architectural Decision: The system or subsystem architecture includes a subsystem con-
sisting of a COTS access control application. 
Rationale: This access control application performs the identification, authentication, 
and authorization of users. It utilizes user identifiers, passwords, biometrics, digital sig-
natures, and more to identify and authenticate users of the system or subsystem being 
assessed. 

E.3.1.3 Example Access Control Evidence 

The example access control security case includes the following acceptable example evidence 
that could be supplied by the architects to support their associated arguments: 

• Configuration Diagram 
The configuration diagram provides evidence for the existence of the access control sub-
system by clearly showing the decomposition of the aggregate system or subsystem into 
its component subsystems, one of which is identified as the access control subsystem. 

• Allocation Diagram 
The allocation diagram provides evidence for the location of the access control subsys-
tem by clearly showing the allocation of the access control software subsystem to a spe-
cific hardware server computer. 

• Network Diagrams 
The network diagram provides evidence for the network connectivity of the access con-
trol subsystem to the servers hosting the services the access control subsystem protects, 
the storage devices hosting the sensitive data the access control subsystem protects, and 
related networks and network devices. This allows the architects to show how the net-
work connectivity of the access control subsystem enables it to protect the associated 
services and sensitive data. 

• Activity and Collaboration Diagrams 
The activity and collaboration diagrams provide evidence of the interactions between 
the access control subsystem, other subsystems, users, and external systems. This allows 
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the architects to show how the interactions involving the access control subsystem en-
able it to protect the associated services and sensitive data. 

• Access Control COTS Trade Study 
The access control trade study provides evidence in the form of an evaluation of the 
various COTS access control products, their vendors, and the relative ability of these 
products to meet the access control requirements of the system or subsystem. This al-
lows the architects to demonstrate the adequacy of the chosen product to meet its allo-
cated identification, authentication, and authorization requirements. 

• Vendor-Supplied Technical Documentation 
The vendor-supplied technical documentation for the selected access control product 
provides evidence that the product has the capabilities needed to meet the access control 
requirements of the system or subsystem. 

• Security White Paper 
The access control section of the security white paper supplied by the architects provides 
evidence in the form of a description of the capabilities of the chosen access control 
product and the results of an analysis of the adequacy of this product. This allows the 
architects to demonstrate the adequacy of the chosen product to meet its allocated identi-
fication, authentication, and authorization requirements. 

E.3.2 Example Integrity Security Case 
Integrity is the degree to which communications or data, hardware, or software components 
are protected from intentional corruption (e.g., via unauthorized creation, modification, dele-
tion, or replay). As illustrated in Figure 31, because integrity is a subtype of the defensibility 
quality subfactors malicious harm and protection and because security is a subtype of defen-
sibility, integrity is a quality subfactor of the quality factor security. 
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Figure 31: Integrity as a Quality Subfactor of Security 

Figure 32 is an example quality case diagram summarizing the claims, arguments, and evi-
dence composing the example integrity security case. 
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Figure 32: Example Integrity Security Quality Case Diagram 

The example integrity security case is made up of the claims, arguments, and evidence pre-
sented in Sections E.3.2.1, E.3.2.2, and E.3.2.3, respectively. 

E.3.2.1 Example Integrity Claims 

The example integrity security case includes the following example claims: 

• Goals 
− Architecture Supports Integrity 

Claim: The architecture adequately supports the system or subsystem’s ability to pro-
tect communications, data, hardware, and software from intentional corruption (e.g., 
via unauthorized creation, modification, deletion, or replay). 
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− Architecture Supports Communications Integrity 
Claim: The architecture adequately supports the system or subsystem’s ability to 
ensure the integrity of communications by protecting them from intentional cor-
ruption (e.g., via unauthorized creation, modification, deletion, or replay). 

− Architecture Supports Data Integrity  
Claim: The architecture adequately supports the system or subsystem’s ability to 
ensure the integrity of stored data by protecting it from intentional corruption (e.g., 
via unauthorized creation, modification, deletion, or duplication). 

− Architecture Supports Hardware Integrity 
Claim: The architecture adequately supports the system or subsystem’s ability to 
ensure the integrity of hardware by protecting it from intentional corruption (e.g., 
via unauthorized creation, modification, destruction, or theft). 

− Architecture Supports Software Integrity 
Claim: The architecture adequately supports the system or subsystem’s ability to 
ensure the integrity of software by protecting it from intentional corruption (e.g., 
via unauthorized creation, modification, deletion, or theft) by attackers or malware 
(i.e., malicious software including computer viruses, worms, Trojan horses, ad-
ware, and spyware). 

• Requirements 
− Architecture Supports Communications Integrity Requirements 

Claim: The architecture adequately supports the system or subsystem’s ability to 
meet the following derived communications integrity requirements that have been al-
located to it: 
− Data Transmitted Integrity Protection Requirement 

“The system or subsystem shall protect the data it transmits from [sophistication 
level] attack involving unauthorized addition, modification, deletion, or replay 
when it transmits the data during the execution of [a set of interactions/use cases] 
listed in [specified table].” 

− Data Received Integrity Detection Requirement 
“The system or subsystem shall determine if communicated data it receives has 
been modified, if additional data has been added to it, if some protected data has 
been deleted, and if any protected data has been replayed during execution of [a set 
of interactions/use cases] when subject to [sophistication level] attack as indicated 
in [specified table].” 

− Data Received Integrity Response Requirement 
“The system or subsystem shall perform [list of application-specific actions] 
within [time limit] if communicated data it receives has been modified, if addi-
tional data has been added to it, if some protected data has been deleted, and if any 
protected data has been replayed during execution of [a set of interactions / use 
cases] when subject to [sophistication level] attack as indicated in [specified ta-
ble].” 

− Architecture Supports Data Integrity Requirements 
Claim: The architecture adequately supports the system or subsystem’s ability to 
meet the following derived data integrity requirements that have been allocated to it: 
− Data Stored Integrity Protection Requirement 

“At least [a percentage such as 99.99%] of the time, the system or subsystem shall 
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protect the data in [specified table] it stores from unauthorized addition, modifica-
tion, or deletion by [attacker with specified profile | malware of specified type].” 

− Data Stored Integrity Detection Requirement 
“At least [a percentage such as 99.99%] of the time, the system or subsystem shall 
detect the unauthorized addition, modification, or deletion the data in [specified 
table] it stores.” 

− Architecture Supports Hardware Integrity Requirements 
Claim: The architecture adequately supports the system or subsystem’s ability to 
meet the following derived hardware integrity requirements that have been allocated 
to it: 
− Hardware Integrity Protection Requirement 

“At least [a percentage such as 99% of the time, the X hardware component shall 
protect itself from unauthorized addition, modification, destruction, or theft from 
an attacker having [attacker profile] using [list of attack techniques] for no longer 
than [time duration].” 

− Hardware Integrity Detection Requirement 
“The X hardware device shall be constructed so that successful tampering is easily 
detectable.” 

− Architecture Supports Software Integrity Requirements 
Claim: The architecture adequately supports the system or subsystem’s ability to 
meet the following derived software integrity (e.g., immunity) requirements that have 
been allocated to it: 
− Scanning Requirement 

“The system or subsystem shall scan all entered or downloaded data and software 
against the published definitions of known malware.” 

− Currency Requirement 
“The system or subsystem shall daily update its list of published definitions of 
known malware.” 

− Disinfection Requirement 
“Where practical, the system or subsystem shall disinfect any data or software 
found to contain malware.” 

− Deletion [Quarantine] Requirement 
“The system or subsystem shall delete [quarantine] all infected data and software 
that it cannot successfully disinfect.” 

− Notification Requirement 
“The system or subsystem shall notify a member of the security team if it detects a 
harmful program during scanning.” 

E.3.2.2 Example Integrity Arguments 

The example integrity security case includes the following example arguments covering the 
architectural decisions the architects have made to justify the assessors’ belief in the associ-
ated claims: 

• Anti-Malware Subsystem 
Architectural Decision: The system or subsystem architecture includes a subsystem con-
sisting of a COTS antivirus application. 
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Rationale: The COTS antivirus application supports the achievement of the system or 
subsystem’s communications, data, and software integrity goals and requirements be-
cause it detects and quarantines malware (e.g., viruses, worms, and Trojan horses), 
thereby preventing them from corrupting communications, data, and software. 

• Encryption/Decryption Subsystem 
Architectural Decision: The system or subsystem architecture includes a subsystem con-
sisting of a COTS encryption/decryption application. 

Rationale: The COTS encryption/decryption application supports the achievement of the 
system or subsystem’s communications and data integrity goals and requirements be-
cause it 
− encrypts and decrypts all sensitive communications and stored data 
− incorporates hash codes that are changed if the communications are corrupted 

• Intrusion Detection Subsystem 
Architectural Decision: The system or subsystem architecture includes a subsystem con-
sisting of a COTS intrusion detection application. 

Rationale: The COTS intrusion detection application supports the achievement of the 
system or subsystem’s data and software integrity goals and requirements because it de-
tects, records, and warns of specific types of intrusions that could result in data and 
software corruption. 

• Network Security Devices 
Architectural Decision: The system or subsystem architecture includes multiple COTS 
network security devices including 
− multiple firewalls that create protected demilitarized zones 
− routers that can be properly configured 
Rationale: The COTS network security devices support the achievement of the subsys-
tem’s data and software integrity goals and requirements because they protect sensitive 
communications, data, and software from corruption. 

• Tamper-Proofing 
Architectural Decision: The system or subsystem architecture includes the following 
tamper-proofing countermeasures: 
− volatile random access memory for the temporary storage of all unencrypted data 

combined with a means to cut power to the device 
− explosive/inflammatory charges to destroy stored data if physical security is com-

promised (e.g., classified data stored in military aircraft that is shot or forced down) 
Rationale: The system or subsystem architecture supports the achievement of data, hard-
ware, and software integrity goals and requirements because these tamper-proofing 
countermeasures make it difficult to 
− corrupt data, hardware, and software components 
− not have any such corruptions detected 
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• Physical Security Countermeasures 
Architectural Decision: The system or subsystem architecture includes the following 
physical security countermeasures (e.g., fences, armed guards, locked doors, secured 
rooms and vaults, cameras, and sensors): 
Rationale: These physical security countermeasures support the achievement of hard-
ware integrity goals and requirements because they minimize attacker physical access to 
data, software, and hardware assets. 

E.3.2.3 Example Integrity Evidence 

The example integrity security case includes the following acceptable example evidence that 
could be supplied by the architects to support their associated arguments: 

• Configuration Diagram 
The configuration diagram provides evidence for the existence of the anti-malware, en-
cryption/decryption, and intrusion detection subsystems by clearly showing the decom-
position of the aggregate system or subsystem into its component subsystems, of which 
these are three. 

• Allocation Diagram 
The allocation diagram provides evidence for the location of the anti-malware, encryp-
tion/decryption, and intrusion detection subsystems by clearly showing the allocation of 
these software subsystems to specific hardware server computers. 

• Network Diagrams 
Network diagrams provide evidence for the network connectivity of the anti-malware, 
encryption/decryption, and intrusion detection subsystems as well as the network secu-
rity devices (e.g., firewalls, routers) to 
− computers and devices involved in sensitive communications 
− disk and tape libraries storing sensitive data 
− servers hosting sensitive software 
This allows the architects to show how the network enables the system or subsystem to 
ensure the integrity of sensitive communications, data, and software. 

• Activity and Collaboration Diagrams 
The activity and collaboration diagrams provide evidence of the interactions between 
the anti-malware, encryption/decryption, and intrusion detection subsystems, other sub-
systems, users, and external systems. This allows the architects to show how these inter-
actions enable the system or subsystem to protect the integrity of its sensitive communi-
cations, data, and software. 

• Integrity COTS Trade Study  
The integrity trade study provides evidence in the form of an evaluation of the various 
COTS anti-malware, encryption/decryption, and intrusion detection products, network 
security devices, their vendors, and the relative ability of these products to meet the in-
tegrity requirements allocated to the system or subsystem. This allows the architects to 
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demonstrate the adequacy of the chosen products to meet their allocated integrity re-
quirements. 

• Vendor-Supplied Technical Documentation 
The vendor-supplied technical documentation for the selected anti-malware product, en-
cryption/decryption product, intrusion detection product, and network security devices 
provide evidence that these products has the capabilities needed to meet the integrity re-
quirements of the system or subsystem. 

• Security Policy 
The security policy produced by the security team provides evidence in the form of 
countermeasures used to ensure integrity of data, hardware, and software components. 

• Security White Paper 
The relevant sections of the security white paper provide evidence in the form of de-
scriptions of the capabilities of the chosen products and the results of analyses of the 
adequacy of these products. This allows the architects to demonstrate the adequacy of 
the chosen products to meet their allocated integrity requirements. 

• Hardware Schematics 
The hardware schematics provide evidence of tamper-proofing of sensitive hardware 
components. 

• Facility Plans 
The facility plans provide evidence of physical security countermeasures such as the lo-
cation of secure rooms and vaults, the location of armed guards and fences, and the loca-
tion of security devices such as cameras and door-locking mechanisms. 

E.3.3 Example Privacy Security Case 
Privacy is the degree to a system or subsystem keeps sensitive identifications, data, and 
communications secret from unauthorized individuals, organizations, software applications, 
and other systems. Privacy consists of the following security subfactors: 

• Anonymity is the degree to which a system or subsystem keeps private the identity of 
individuals, organizations, applications, and systems from unauthorized individuals, or-
ganizations, software applications, or systems. 

• Confidentiality is the degree to which a system or subsystem keeps private sensitive 
data and communications from unauthorized individuals, organizations, software appli-
cations, or systems. 

Figure 33 is an example quality case diagram summarizing the claims, arguments, and evi-
dence composing the example privacy security case. 
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Figure 33: Example Privacy Quality Case Diagram 

The example privacy security case is made up of the claims, arguments, and evidence pre-
sented in Sections E.3.3.1, E.3.3.2, and E.3.3.3, respectively. 

E.3.3.1 Example Privacy Security Claims 

The example privacy security case includes the following example claims: 
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• Privacy Requirements 
Privacy is the degree to which sensitive identifications, data, and communications is 
kept secret from unauthorized individuals, organizations, software applications, and sys-
tems:68 

− Anonymity (identity) Requirements 
whereby anonymity protects identities 
− “The system or subsystem shall prevent the unauthorized disclosure of the identity 

of [some class of users].” 
− Confidentiality Requirements 

whereby confidentiality protects data and communications 
− “The system or subsystem shall prevent the unauthorized disclosure of [some class 

of sensitive data or communications].” 

E.3.3.2 Example Privacy Arguments 

The example privacy security case includes the following example arguments covering the 
architectural decisions the architects have made to justify the assessors’ belief in the associ-
ated claims: 

• Encryption/Decryption Subsystem 
Architectural Decision: The system or subsystem architecture will include a subsystem 
consisting of a COTS encryption/decryption application. 

Rationale: This subsystem supports confidentiality by encrypting and decrypting all sen-
sitive data when both stored and transmitted. 

• Network Security Devices 
Architectural Decision: The system or subsystem architecture incorporates network se-
curity devices including firewalls and routers. For example, the architecture incorporates 
multiple firewalls at strategic locations in the network. 

Rationale: The firewalls create “demilitarized zones” that protect sensitive data from un-
authorized external access. 

• Separation of Classified Data 
Architectural Decision: The system or subsystem architecture separates classified data at 
different levels of classification onto separate physical processors, OS processes, and 
storage (e.g., disk and tape libraries). 

                                                 
68 Technically, security is concerned with preventing and detecting the malicious disclosure of sensi-

tive identities, data, and communications during an attack, whereas safety is concerned with pre-
venting and detecting their accidental disclosure during an accident. Note that both attacks and 
accidents can result in the same harm to valuable assets (i.e., to individuals, organizations, and 
their sensitive data) and that the architects can give the same arguments as part of both safety and 
security cases because they can use the same architecture mechanisms (controls) as both safe-
guards and countermeasures. 
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Rationale: This separation makes it difficult for data and services at higher levels of 
classification to mix with and be accessed by data and services at lower levels of classi-
fication. 

• Physical Security 
Architectural Decision: The system architecture places its valuable assets (e.g., people 
and property such as sensitive data, valuable hardware, and private services) within 
locked facilities and vaults protected by cameras and armed guards. 

Rationale: The architecture of the system or subsystem supports the achievement of its 
allocated physical security requirements. 

• Tamper-Proofing 
Architectural Decision: The architecture of the system or subsystem supports the 
achievement of its data confidentiality requirements by using 
− volatile random access memory for the temporary storage of all unencrypted data 

combined with a means to cut power to the device 
− explosive/inflammatory charges to destroy stored data if physical security is com-

promised (e.g., classified data stored in military aircraft that is shot or forced down).  

E.3.3.3 Example Privacy Evidence 

The example privacy security case includes the following acceptable example evidence that 
could be supplied by the architects to support their associated arguments: 

• Activity/Collaboration Diagram 
One or more activity and collaboration diagrams are used as valid evidence to support 
the architects’ privacy arguments as follows: 
− Encryption/Decryption Subsystem 

Activity and collaboration diagrams document the existence, location, and use of the 
encryption/decryption subsystem including interactions between the encryp-
tion/decryption subsystem, other subsystems, users, and external systems. 

• Allocation Diagram 
One or more allocation diagrams are used as valid evidence to support the architects’ 
privacy arguments as follows: 
− Encryption/Decryption Subsystem 

An allocation diagram documents the existence and location of the encryp-
tion/decryption subsystem by clearly showing the allocation of the encryp-
tion/decryption subsystem to hardware (i.e., one or more server computers). 

• Block Diagrams 
One or more block diagrams are used as valid evidence to support the architects’ privacy 
arguments as follows: 
− Tamper-Proofing 

Block diagrams provide evidence for adequate tamper-proofing by documenting the 
existence of explosive/inflammatory charges to destroy stored data if physical secu-
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rity is compromised (e.g., classified data stored in military aircraft that is shot or 
forced down).  

• Configuration Diagram 
One or more configuration diagrams are used as valid evidence to support the architects’ 
privacy arguments as follows: 
− Encryption/Decryption Subsystem 

A configuration diagram documents the existence of the encryption/decryption sub-
system by clearly documenting the decomposition of the aggregate system or subsys-
tem into its component subsystems with the encryption/decryption subsystem identi-
fied. 

• Data Flow Diagram 
One or more data flow diagrams are used as valid evidence to support the architects’ pri-
vacy arguments as follows: 
− Encryption/Decryption Subsystem 

Data flow diagrams document the existence, location, and use of the encryp-
tion/decryption subsystem by documenting the movement of encrypted and de-
crypted data through the system or subsystem. 

− Separation of Classified Data 
Data flow diagrams document the proper separation of sensitive data at different lev-
els of classification by documenting the movement of sensitive data of different clas-
sification levels through the system or subsystem. 

• Data Schemas 
One or more logical and physical data schemas are used as valid evidence to support the 
architects’ privacy arguments as follows: 
− Separation of Classified Data 

Logical and physical data schemas document the proper separation of sensitive data 
at different levels of classification by documenting the storage of data of different 
classification levels. 

• Facility Plans 
The facility floor plans are used as valid evidence to support the architects’ privacy ar-
guments as follows: 
− Physical Security 

Facility floor plans provide acceptable evidence for adequate physical security by 
documenting the 
− location of valuable assets including people, property (e.g., sensitive data, hard-

ware, and software), and access to service 
− location of armed guards, locked doors, and secure areas (e.g., rooms and vaults) 
− location of security devices such as cameras, motion sensors, and physical access 

devices (e.g., locks, biometric sensors) 
− Facility Maps 

Facility maps are used as valid evidence to support the architects’ privacy arguments 
as follows: 
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− Physical Security 
One or more facility maps document physical security by documenting the loca-
tion of security fences and sensors. 

• Hardware Schematics 
One or more hardware schematics are used as valid evidence to support the architects’ 
privacy arguments as follows: 
− Tamper-Proofing 

Hardware schematics provide evidence for adequate tamper-proofing by document-
ing the existence of explosive/inflammatory charges to destroy stored data if physical 
security is compromised (e.g., classified data stored in military aircraft that is shot or 
forced down).  

• Network Diagram 
One or more network diagrams are used as valid evidence to support the architects’ pri-
vacy arguments as follows: 
− Encryption/Decryption Subsystem 

Network diagrams document the existence and location of the encryption/decryption 
subsystem by showing the connectivity between the server(s) hosting the encryp-
tion/decryption subsystem, the servers hosting and storage devices storing the data 
the encryption/decryption subsystem protects, and related networks and network de-
vices, enabling the architects to show how the location of the encryption/decryption 
subsystem enables it to protect the associated sensitive data. 

− Network Security Devices 
Network diagrams document the network devices having security functions including 
the networks, clients, and servers, enabling the architects to show  
− the existence, location, and adequacy of the network devices having security func-

tions (e.g., firewalls and routers) 
− associated demilitarized zones 
− potential attack paths 
− how the location of these devices enables them to properly perform their security 

functions 
− Separation of Classified Data 

Network diagrams document the proper separation of sensitive data at different levels 
of classification by showing connectivity between the server(s) hosting the software 
components creating/accessing/using/storing sensitive data, storage devices (e.g., 
disk and tape libraries) that store such data, and the possible paths along which such 
data can flow. 

• Security Policy 
The security policy used as valid evidence to support the architects’ privacy arguments 
as follows: 
− Physical Security 

The security policy documents how physical security will be achieved.  
− Tamper-Proofing 

The security policy documents how adequate tamper-proofing will be achieved.  
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• Security White Paper 
Security white papers are used as valid evidence to support the architects’ privacy argu-
ments as follows: 
− Encryption/Decryption Subsystem 

The security white paper documents the existence, location, capabilities, and use of 
the encryption/decryption subsystem in its encryption/decryption section.  

− Network Security Devices 
The security white paper documents the existence, location, capabilities, and use of 
the network devices having security functions (e.g., firewalls and routers) in its net-
work security section.  

− Separation of Classified Data 
The security white paper documents the proper separation of sensitive data at differ-
ent levels of classification by documenting how data of different classification levels 
are kept separate. 

− Tamper-Proofing 
The security white paper on tamper-proofing provides evidence for adequate tamper-
proofing by documenting the use of volatile random access memory for the tempo-
rary storage of all unencrypted data combined with a means to cut power to it when 
necessary so that the data is deleted. 

• Timing Diagrams 
One or more timing diagrams are used as valid evidence to support the architects’ pri-
vacy arguments as follows: 
− Separation of Classified Data 

Timing (and process) diagrams document the proper separation of sensitive data at 
different levels of classification by documenting the allocation of data at different 
classification levels to different OS processes or time slices. 

− Vendor-Supplied Technical Documentation 
Vendor-supplied technical documentation is used as valid evidence to support the ar-
chitects’ privacy arguments as follows: 
− Encryption/Decryption Subsystem 

The vendor-supplied technical documentation for the selected encryp-
tion/decryption subsystem documents the capabilities of this subsystem in the as-
sociated sections.  

− Network Security Devices 
The vendor-supplied technical documentation for the selected network devices 
having security functions (e.g., firewalls and routers) documents the capabilities of 
these devices in the associated sections.  

− Vendor Trade Studies 
Vendor trade studies are used as valid evidence to support the architects’ privacy ar-
guments as follows: 
− Encryption/Decryption Subsystem 

The encryption/decryption vendor trade study documents the capabilities of the se-
lected subsystem in the section on the selected subsystem.  
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− Network Security Devices 
The security vendor trade study documents the security capabilities of the network 
devices having security functions (e.g., firewalls and routers).  

E.4.4 Example Security Auditing Security Case 
The security subfactor, security auditing, is the degree to which the system or subsystem en-
ables security personnel to audit the status and use of security mechanisms69 by analyzing 
security-related events. 

The example security auditing security case is made up of the claims, arguments, and evi-
dence presented in Sections E.3.4.1, E.3.4.2, and E.3.4.3, respectively. 

E.4.4.1 Example Security Auditing Claims 

The example security auditing security case includes the following example claims: 

• Security Auditing Requirements 
whereby security auditing is the degree to which the system or subsystem enables secu-
rity personnel to audit the status and use of security mechanisms by analyzing associated 
security-related events 

− Security Audit Control Requirements  
− “At least 99.9% of the time, the system or subsystem shall automatically start se-

curity auditing within 0.1 seconds of startup and restart.”  
− “At least 99.99% of the time, the system or subsystem shall enable [an explicitly 

identified and authenticated list of individuals, user roles, or user groups] to start 
and stop security auditing.”  

− “At least 99.99% of the time, the system or subsystem shall enable [an explicitly 
identified and authenticated list of individuals, user roles, or user groups] to read 
and modify the security events to be audited.”  

− Security Audit Log Content Requirements 
− “The system or subsystem shall record at least 99.99% of the following security-

related events:  
o security audit startup  
o security audit shutdown 
o access control events (including successful and unsuccessful identification, au-

thentication, and authorization events) 
o changes in access control 
o intrusion detection (including attempts to control security auditing or to mod-

ify the security log) 
o [application-specific entries]” 
 

                                                 
69 See http://www.opfro.org/Glossary/GlossaryS.html#security_mechanism for more information. 
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− “At least 99.99% of the time, the system or subsystem shall include the following 
information within each security audit record:  
o date and time of the security event 
o type of security event 
o parties (e.g., human, external application, software process) to the security 

event 
o outcome (e.g., success, failure) of security event 
o [application-specific entries]”  

− Security Audit Reporting 
− “At least 99.9% of the time, the system or subsystem shall enable the following 

explicitly identified and authenticated individuals, user roles, or user groups to 
read/search/sort the security audit records: [an application-specific list].”  

− “At least 99.99% of the time, the system or subsystem shall enable the following 
explicitly identified and authenticated individuals, user roles, or user groups to 
read/generate the security audit reports: [an application-specific list].”  

− Security Audit Log Protection 
− “At least 99.9% of the time, the system or subsystem shall protect the audit log 

contents from being modified for at least one day when under attack by a hacker of 
medium-sophistication.”  

− “At least 99.9% of the time, the system or subsystem shall detect any attempts to 
modify the audit log contents by a hacker of medium-sophistication during a one 
day period.”  

− “At least 99.9% of the time, the system or subsystem shall protect the audit log 
contents for at least one day from unauthorized deletion by a hacker of medium 
sophistication.”  

− “At least 99.99% of the time, the system or subsystem shall notify the following 
identified and authenticated individuals, user roles, or user groups if the security 
audit log exceeds [an application-specific size]: [an application-specific list].”  

− “At least 99.99% of the time, the system or subsystem shall retain at least the 500 
most recent audit log records when any of the following exceptional conditions 
occur:  
o failure of audit hardware or software components 
o exhaustion of audit log storage” 

E.3.4.2 Example Security Audit Security Case Arguments 

The example security audit security case includes the following example arguments covering 
the architectural decisions the architects have made to justify the assessors’ belief in the asso-
ciated claims: 

• COTS Security Audit Subsystem 
Architectural Decision: The architecture includes a COTS security audit subsystem. 

Rationale: Compared to an in-house developed system, the COTS subsystem is of 
higher quality, costs significantly less, and will decrease development time. It meets the 
security audit control, audit log contents, audit reporting, and audit log protection re-
quirements. 
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E.3.4.3 Example Security Audit Security Case Evidence 

The example security audit security case includes the following acceptable example evidence 
that could be supplied by the architects to support their associated arguments: 

• Configuration Diagram 
A configuration diagram clearly shows the decomposition of the aggregate system or 
subsystem into its component subsystems with the security audit subsystem identified. 

• Allocation Diagram 
An allocation diagram clearly shows the allocation of the security audit subsystem to 
hardware (i.e., one or more server computers). 

• Network Diagram 
One or more network diagrams show connectivity between the server(s) hosting the se-
curity audit subsystem, other servers, and related networks and network devices (e.g., 
firewalls and routers), enabling the architects to show 
− where security event information is generated 
− where security events are logged  
− the flow of security event notifications 
− how the location of the security audit subsystem enables it to properly perform its 

functions 

• Collaboration Diagram and/or Activity Diagram 
One or more collaboration diagrams or activity diagrams document interactions between 
the security audit subsystem, other subsystems, and attackers. 

• Security White Paper 
A security white paper documents the capabilities of the security audit subsystem.  

• Trade Study 
A trade study documents the capabilities of the security audit subsystems that were con-
sidered for use in the system architecture.  

• Vendor-Supplied Technical Description 
Vendor-supplied technical description documents the capabilities of the security audit 
subsystem.  
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E.4 Example Stability Case 
Stability is the degree to which a system or subsystem continues to deliver mission-critical 
services during a given time period under a given operational profile regardless of any fail-
ures whereby the 

• failures may prevent the system or subsystem from delivering less critical services 

• failures limiting the delivery of mission-critical services occur at unpredictable times 

• root causes of such failures are difficult to identify efficiently 

A system is stable to the degree that minor failures do not cascade into major failures. 

E.4.1 Example Stability Protection Case 
As a stability subfactor, stability protection is the degree to which the system is stable as op-
posed to detecting when it is not stable or reacting properly when it is not stable. 

Figure 34 is an example stability quality case diagram summarizing the claims, arguments, 
and evidence composing the example stability case. 
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Figure 34: Example Stability Quality Case Diagram 

The example stability quality case is made up of the claims, arguments, and evidence pre-
sented in Sections E.4.1.1, E.4.1.2, and E.4.1.3, respectively. 

E.4.1.1 Stability Claims 

The example stability performance case includes the following example claims: 

• Goals 
− Architecture Supports Stability Goal 

Claim: The system or subsystem architecture adequately supports the stability of the 
system or subsystem. 
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• Requirements 
− Architecture Supports Stability Requirements 

Claim: The architecture adequately supports the system or subsystem’s ability to 
meet the following derived stability requirements that have been allocated to it: 
− Mean Time Between Critical Failures (Stability Requirement) 

“Under normal operating conditions, the system shall not lose mission-critical 
functionality more often than an average of once every 5,000 hours of operation 
(i.e., the mean time between critical failures70 is at least 5,000 hours of opera-
tion).” 

− Cascading Failures (Stability Requirement) 
“Under normal operating conditions, the system shall prevent critical failures in 
any lower criticality subsystem from cascading into failures of its higher criticality 
subsystems with a mean time between critical failures of at least 5,000 hours of 
operation.” 

− Well-Formed Interactions (Stability Constraint) 
“Interactions between subsystems at different levels of criticality shall be well 
formed.” 

E.4.1.2 Example Stability Arguments 

The example stability case includes the following example arguments covering the architec-
tural decisions the architects have made to justify the assessors’ belief in the associated 
claims: 

• Critically Based Allocation of Requirements to Components  
Architectural Decision: Except in a small number of identified and justified cases, each 
architectural component implements requirements that are classified as having a single 
criticality level. 

Rationale: System requirements are classified into a partially order set of distinct criti-
cality levels according to overall mission needs. Architectural components at higher lev-
els of criticality must be better engineered than components at lower levels of criticality. 
Allocating a mixture of critical and non-critical requirements to a single architectural 
component would require that the component be engineered at the highest critical level 
of all requirements allocated to the component, which would significantly increase the 
effort and cost required to design, implement, and test the component. 

This architecture decision improves stability because it lowers engineering costs and 
lowers the coupling between software that implements higher criticality and lower criti-
cality requirements. 

 

 

                                                 
70 A critical failure is defined as any failure that results in the loss of mission-critical functionality. 
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• Partitioning of Shared Hardware Resources 
Architectural Decision: Based on the criticality of the requirements allocated to software 
architectural components, the architecture partitions and allocates the following kinds of 
shared hardware resources to these software components: 
− CPU cycles 
− communication bandwidth 
− storage 
Rationale: Hardware resource budgets are established for each software component and 
performance analyses of current estimated software component resource utilization ver-
ify that the allocated budgets should be adequate.71 Partitioning hardware resources is 
the simplest approach to ensure critical services will have adequate hardware resources. 
Lower criticality software components must not overuse storage because they may cor-
rupt code or data of higher level criticality components. 

This architectural decision improves stability because it prevents the overuse of hard-
ware resources by lower criticality software components from causing the failure of 
higher criticality software components. 

• Protecting Shared Software Resources 
Architectural Decision: Designers and implementers are required to adhere to the fol-
lowing architectural rules: 
− Software components are forbidden to use system calls (e.g., kill) that can interfere 

with the execution of other applications. Only system managers can terminate ill-
behaving software components. 

− The longest system call must be within the designated limits, which are published 
and available for schedulability analysis. 

− All shared libraries used by software components are re-entrant. 
Rationale: The system architecture partitions shared software resources to prevent soft-
ware components at different levels of criticality from corrupting shared services (e.g., 
OS and middleware) by ensuring that the software components cannot interfere with 
each other via those shared services. If lower criticality software components takes too 
long when using a shared resource, it may delay the execution of a higher criticality 
software component that is waiting for the service. If the software in a shared library is 
not re-entrant, then the next user could be adversely affected if the calling software 
component fails in the middle of a library call.  

This architecture decision improves stability because it prevents failures of lower criti-
cality components from causing failures of higher criticality components. 

                                                 
71 Note that at the current time during development, the adequacy of the allocated resource budgets 

cannot be completely verified because the detailed design of the subsystem is not yet complete. 
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• Well-Formed Dependencies between Software Components 
Architectural Decision: Designers and implementers are required to adhere to the fol-
lowing architectural rules: 
− Software components allocated requirements of different criticality can only interact 

via asynchronous message passing. 
− The logical dependencies resulting from message exchanges between software com-

ponents that are allocated requirements of different criticality must be verifiably well 
formed.72 

Rationale: If two software components interact via shared variables and one fails while 
holding a lock on the shared variable, then the other software components needing ac-
cess to the shared variable will be locked. A similar problem will occur if send-wait 
(aka, synchronous message passing) is used. Restricting interactions to asynchronous 
message passing avoids this kind of failure. If all logical dependencies resulting from 
message exchanges are verified to be well-formed, then faults and failures in the less 
critical component will not cause failures in the more critical components.  

This architectural decision improves stability because it prevents failures of lower-
criticality components from causing failures of higher-criticality components. 

• Include Hooks for Stability Verification 
Architectural Decision: Hardware and software components include hooks for later sta-
bility verification. 
− Hardware hooks include such things as testing pins on the board or a network testing 

harness. 
− Software hooks include annotations for static analysis, instrumented code, and inter-

faces for test messages. 
Rationale: Because stability depends on reliability, if the hardware component does not 
have the required reliability, then it should provide hardware interfaces to support sub-
sequent diagnostics. Such hardware testing access enables testers to trace potential prob-
lems back to their source components during integration testing. 

Note that although this architectural decision is usually used during prototyping and de-
velopment rather than for production, care must be exercised because removal of the 
hook might have unexpected side-effects to the production system (i.e., you are deliver-
ing something other than what you tested). Note that if the hooks are left in, then this ar-
chitectural decision may have negative security implications. Hooks may also have 
negative impacts on performance.  

                                                 
72 By “well-formed dependency” we mean that the critical service is not allowed to use a less critical service 

unless we can verify that the critical services cannot be compromised by the faults and failures in the less 
critical services. For example, in a passenger jet, the navigation system may use the entertainment subsystem 
to inform passengers about the current location and the speed of the plane. However, to do that we must be 
able to verify that faults and failures in the entertainment system cannot compromise navigation. 
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This architectural decision improves stability because it enables the early detection and 
removal of stability problems. 

E.4.1.3 Example Stability Evidence 

The example stability case includes the following acceptable example evidence that could be 
supplied by the architects to support their associated arguments: 

• Requirements Specification 
The system or subsystem requirements specification documents the criticality levels of 
the individual requirements73 allocated to the system or subsystem respectively. 

• Requirements Repository 
The requirements repository stores the criticality levels of the individual requirements as 
metadata associated with the individual requirements. 

• Architecture Document 
The architecture document provides an overview of the architecture decisions improving 
stability and their rationales. 

• Architecture Rule Inspection Results 
This documentation reports the results of inspections that verify compliance with archi-
tectural rules including rules to ensure that 
− hardware resources are properly partitioned 
− interactions between software components are well formed 

• Stability White Paper 
This document provides detailed descriptions of architecture decisions improving stabil-
ity and their rationales. 

• Activity/Collaboration Diagram 
One or more activity or collaboration diagrams document test interfaces (e.g., using 
UML stereotypes). 

• Hardware Schematics 
One or more hardware schematics document test interfaces. 

 

                                                 
73 This includes classifying the criticality of all functional, data, interface, and quality requirements. 
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Appendix F Example Contract Language 

To ensure that adequate resources are included in architecture plans and schedules, it is im-
portant for acquisition organizations to include appropriate contract language in requests for 
proposals (RFPs) and development contracts. The following is provided as example, tailor-
able contract language to mandate the performance of system architecture quality assess-
ments based on architect-supplied quality cases: 

1. As the system architecture is developed, the contractor shall support incremental as-
sessments of the quality of the system architecture. 

2. Support for system architecture quality assessments shall be documented in architecture 
plans, procedures, and schedules. 

3. The system architecture quality assessment method shall be based on architect-
developed quality cases provided and presented to the assessment team(s). 

4. The system architecture shall be assessed in terms of the ability of the architectures of its 
subsystems to sufficiently support the achievement of the prioritized quality goals and 
requirements that have been derived and allocated to the subsystems. 

5. The assessment team shall be led by members of the acquisition organization.  

6. During these subsystem architecture quality assessments, the subsystem architects shall 
make compelling quality cases to the assessment team that their architectures suffi-
ciently support the achievement of the associated quality goals and requirements. 

7. The subsystem architects shall provide clear and compelling arguments stating the archi-
tectural decisions that they have made and their rationales for making these decisions. 

8. The subsystem architects shall provide the assessment team with access to sufficient 
evidentiary documentation (or hold acquirer-witnessed demonstrations) to support their 
arguments and thereby justify their claims that their architectures adequately support the 
subsystem’s ability to achieve its quality goals and requirements. 

The preceding language is intended to be tailored to meet the needs of the specific contract. 
For example, the following aspects of the above languages should be considered for tailoring: 

• Item 2 – Where should support for the system architecture quality assessments be docu-
mented? Who approves the adequacy and quality of this documentation? 

• Item 5 – Who should lead the assessment team: the acquisition organization or contrac-
tor? What organizations are responsible for what aspects of the assessments? To what 
degree should assessments be independent of the architecture team? Should the assess-
ments be internal to the development organization or performed by an independent or-
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ganization? Should the acquisition organization take part in the assessment team? If so, 
should they lead the assessment team? 

• What about subcontractors? Must the prime contractor mandate system architecture 
quality assessments onto subcontractors of major subsystems? Down to what level? 
Should the acquisition organization be involved in these assessments? 

• What if the acquisition organization and contractor do not agree on the scope of the as-
sessments (e.g., subsystems and quality factors)? 
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